第一篇:21.1_一元二次方程_教學(xué)設(shè)計(jì)_教案
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
1.1 知識(shí)與技能:
探索一元二次方程及其相關(guān)概念,能夠辨別各項(xiàng)系數(shù);能夠從實(shí)際問題中抽象出方程知識(shí)。
1.2過程與方法 :
在探索問題的過程中使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界的一個(gè)模型,體會(huì)方程與實(shí)際生活的聯(lián)系.1.3 情感態(tài)度與價(jià)值觀 :
通過用一元二次方程解決身邊的問題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用.
2.教學(xué)重點(diǎn)/難點(diǎn)
2.1 教學(xué)重點(diǎn)
一元二次方程的定義、各項(xiàng)系數(shù)的辨別,根的作用. 2.2 教學(xué)難點(diǎn) 根的作用的理解.
3.教學(xué)用具
多媒體,教學(xué)用直尺、小黑板
4.標(biāo)簽
教學(xué)過程
一、引入新課
創(chuàng)設(shè)問題情境,激發(fā)學(xué)生興趣,引出本節(jié)內(nèi)容 活動(dòng)一: [1]情境引入
1.要設(shè)計(jì)一座高2m的人體雕像,使它的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部的高度比,求雕像的下部應(yīng)設(shè)計(jì)為高多少米?
2.如圖,有一塊矩形鐵皮,長(zhǎng)100 cm,寬50 cm.在它的四個(gè)角分別切去一個(gè)正方形,然后將四周突出的部分折起,就能制作一個(gè)無蓋方盒.如果要制作的無蓋方盒的底面積是3600 cm2,那么鐵皮各角應(yīng)切去多大的正方形?
學(xué)生通過分析設(shè)出合適的未知數(shù),列出方程.問題1考慮從不同角度列方程,角度一:等量關(guān)系是底面的長(zhǎng)×寬等于底面積,設(shè)切去的正方形的邊長(zhǎng)是x cm,則有方程(100-2x)(50-2x)=3 600;角度二:等量關(guān)系是底面積等于大長(zhǎng)方形的面積減去四個(gè)小正方形的面積,再減去四個(gè)長(zhǎng)方形的面積,同樣設(shè)正方形的長(zhǎng)是xcm,則有方程x2-75+350=0通過整理得到方程.
二、新知介紹 活動(dòng)二:
[2]要組織一次排球邀請(qǐng)賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng).根據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,比賽組織者應(yīng)該邀請(qǐng)多少個(gè)隊(duì)參賽?
分析:全部比賽共28場(chǎng),若設(shè)邀請(qǐng)x個(gè)隊(duì)參賽,每個(gè)隊(duì)要與其他(x-1)個(gè)隊(duì)各賽一場(chǎng),由于甲隊(duì)對(duì)乙隊(duì)的比賽和乙隊(duì)對(duì)甲隊(duì)的比賽是同一場(chǎng)比賽,所以全部比賽共場(chǎng),于是得到方程
經(jīng)過整理得到方程x2-x-56=0 教師應(yīng)注意:(1)學(xué)生對(duì)列方程解應(yīng)用問題的步驟是否清楚;(2)學(xué)生能否說出每一步驟的關(guān)鍵和應(yīng)注意問題. 說明:由實(shí)際問題入手,設(shè)置情境問題,激發(fā)學(xué)生的興趣,讓學(xué)生初步感受一元二次方程,同時(shí)讓學(xué)生體會(huì)方程這一刻畫現(xiàn)實(shí)世界的數(shù)學(xué)模型.活動(dòng)三: [3]探索新知 觀察下列得到的方程:(1)x2-75x+350=0(2)x2-x-56=0(3)x(x-1)=28 學(xué)生活動(dòng):請(qǐng)口答下面問題.
(1)上面幾個(gè)方程整理后含有幾個(gè)未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子? 結(jié)論:
(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
歸納定義:等號(hào)兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程. 一元二次方程的一般形式是:ax2+bx+c=0(a≠0).
其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
思考:為什么規(guī)定a≠0 強(qiáng)調(diào):一元二次方程定義中的三個(gè)條件:(1)是整式方程,(2)含有一個(gè)未知數(shù),(3)未知數(shù)的最高次數(shù)是2,三個(gè)條件缺一不可
說明:主體活動(dòng),探索一元二次方程的定義及其相關(guān)概念. [4]新知應(yīng)用
例:將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并指出各項(xiàng)系數(shù).
解:去括號(hào)得3x2-3x=5x+10 移項(xiàng),合并同類項(xiàng),得一元二次方程的一般形式3x2-8x-10=0 其中二次項(xiàng)系數(shù)是3,一次項(xiàng)系數(shù)是-8,常數(shù)項(xiàng)是-10.
學(xué)生活動(dòng):學(xué)生自主解決問題,通過去括號(hào)、移項(xiàng)等步驟把方程化為一般形式,然后指出各項(xiàng)系數(shù).
教師活動(dòng):在學(xué)生指出各項(xiàng)系數(shù)的環(huán)節(jié)中,分析可能出現(xiàn)的問題(比如系數(shù)的符號(hào)問題).
說明:進(jìn)一步鞏固一元二次方程的基本概念. 例 猜測(cè)方程x2-x-56=0的解是什么?
學(xué)生活動(dòng):學(xué)生可以采取多種方法得到方程的解,比如可以用嘗試的方法取x=1、2、3、4、5等,發(fā)現(xiàn)x=8時(shí)等號(hào)成立,于是x=8是方程的一個(gè)解,如此等等.
教師活動(dòng):教師引導(dǎo)學(xué)生自主探索,多種途徑尋找方程的解,在此基礎(chǔ)上讓學(xué)生進(jìn)行總結(jié):
使一元二次方程等號(hào)兩邊相等的未知數(shù)的值叫作一元二次方程的解(又叫作一元二次方程的根).
三、復(fù)習(xí)總結(jié)和作業(yè)布置
1.把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。
[解]去括號(hào),得3x2+5x-12=x2+4x+4,化簡(jiǎn),得2x2+x-16=0。二次項(xiàng)系數(shù)是2,一次項(xiàng)系數(shù)是1,常數(shù)項(xiàng)是-16。2.下列方程,哪些是一元一次方程?哪些是一元二次方程?(1)3x+5=6x-5;
(2)=26;
(3)(x-2)(x-3)=x2+6;
(4)(x+1)(3x-1)=(x-1)5。
[解]方程(1),(3)是一元一次方程;方程(2)(4)是一元二次方程。3.當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元二次方程?這時(shí)方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)分別是什么?當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元一次方程? 當(dāng)a≠1時(shí)是一元二次方程,這時(shí)方程的二次項(xiàng)系數(shù)是a-1,一次項(xiàng)系數(shù)是-b;當(dāng)a=1,b≠0時(shí)是一元一次方程。答案:
1.二次項(xiàng)系數(shù)是2,一次項(xiàng)系數(shù)是1,常數(shù)項(xiàng)是-16。
2.方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。3.當(dāng)a≠1時(shí)是一元二次方程,這時(shí)方程的二次項(xiàng)系數(shù)是a-1,一次項(xiàng)系數(shù)是-b;當(dāng)a=1,b≠0時(shí)是一元一次方程。
課堂小結(jié)
1.一元二次方程的概念.一元二次方程的定義要求的三個(gè)條件。要靈活運(yùn)用定義判斷方程是一元二次方程或由一元二次方程來確定一些字母的值及取值范圍
2.一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念 3.一元二次方程根的概念以及作用
課后習(xí)題 講義有
板書 一元二次方程 1.了解一元二次方程的概念和一般形式.2.會(huì)判別一元二次方程的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)和常數(shù)項(xiàng).3.注意:一元二次方程的二次項(xiàng)系數(shù)不能為零.
第二篇:一元二次方程教學(xué)設(shè)計(jì)
《一元二次方程》教學(xué)設(shè)計(jì)
一、內(nèi)容和內(nèi)容解析
(一)內(nèi)容
一元二次方程的概念,一元二次方程的一般形式.
(二)內(nèi)容解析
一元二次方程是解決諸多實(shí)際問題的需要,是二次函數(shù)的基礎(chǔ).
針對(duì)一系列實(shí)際問題,建立方程,引導(dǎo)學(xué)生觀察這些方程的共同特點(diǎn),從而歸納得出一元二次方程的概念及一般形式.在這個(gè)過程中,通過歸納具體方程的共同特點(diǎn),得出一元二次方程的概念.一般形式ax2+bx+c=0也是對(duì)具體方程從“元”(未知數(shù)的個(gè)數(shù))、“次數(shù)”和“項(xiàng)數(shù)”等角度進(jìn)行歸納的結(jié)果;a≠0的條件是確保滿足 “二次”的要求.
二、目標(biāo)和目標(biāo)解析
(一)教學(xué)目標(biāo)
1.體會(huì)一元二次方程是刻畫實(shí)際問題的重要數(shù)學(xué)模型,初步理解一元二次方程的概念;
2.了解一元二次方程的一般形式,會(huì)將一元二次方程化成一般形式.
(二)目標(biāo)解析
1.學(xué)生能舉例說明一元二次方程存在的實(shí)際背景,感受一元二次方程是重要的數(shù)學(xué)模型,體會(huì)到學(xué)習(xí)的必要性;
2.將不同形式的一元二次方程統(tǒng)一為一般形式,學(xué)生從數(shù)學(xué)符號(hào)的角度,體會(huì)概括出數(shù)學(xué)模型的簡(jiǎn)潔和必要,針對(duì)“二次”規(guī)定a≠0的條件,完善一元二次方程的概念.學(xué)生能夠?qū)⒁辉畏匠陶沓梢话阈问?,?zhǔn)確的說出方程的各項(xiàng)系數(shù),并能確定簡(jiǎn)單的字母系數(shù)方程為一元二次方程的條件.
三、教學(xué)問題診斷分析
一元二次方程是學(xué)生學(xué)習(xí)的第四個(gè)方程知識(shí),首先在初一學(xué)習(xí)了一元一次方程,接著擴(kuò)展“元”得到二元一次、三元一次方程,完成了二元一次方程組的學(xué)習(xí),初二分式的教學(xué),使得對(duì)實(shí)際問題的刻畫從整式推廣到有理式,分式方程得以出現(xiàn),到一元二次方程第一次實(shí)現(xiàn) “次”的提升.學(xué)生必然存在著疑問,為什么有些背景列得的方程是二次的呢?教學(xué)中要直面學(xué)生的疑問,顯化學(xué)生的疑問,啟發(fā)學(xué)生自己解釋疑問,才能避免“灌輸”,體現(xiàn)知識(shí)存在的必要性,增強(qiáng)學(xué)好的信念.
培養(yǎng)建模思想,進(jìn)一步提升數(shù)學(xué)符號(hào)語言的應(yīng)用能力,讓學(xué)生自己概括出一元二次方程的概念,得出一般形式,對(duì)初三學(xué)生是必須的,也是適可的.
本課的教學(xué)重點(diǎn)應(yīng)該放在形成一元二次方程概念的過程上,在概念的理解上要下功夫. 本課的教學(xué)難點(diǎn)是一元二次方程的概念.
四、教學(xué)過程設(shè)計(jì)
(一)創(chuàng)設(shè)情境,引入新知
教師展示教科書本章的章前圖,請(qǐng)同學(xué)們閱讀章前問題,并回答: 問題1.這個(gè)方程屬于我們學(xué)過的某一類方程嗎?
師生活動(dòng):學(xué)生整理已經(jīng)學(xué)過的方程類型,復(fù)習(xí)方程的概念,元與次的概念,觀察新方程,分析此方程的元與次,嘗試為新方程命名.
【設(shè)計(jì)意圖】使學(xué)生認(rèn)識(shí)到一元二次方程是刻畫某些實(shí)際問題的模型,體會(huì)學(xué)習(xí)的必要性,在學(xué)生已有的知識(shí)的體系中合理的構(gòu)建一元二次方程這一新知識(shí).
問題2.這樣的方程在其他實(shí)際問題中是否還存在呢?你能再想出一個(gè)例子嗎?
師生活動(dòng):學(xué)生思考二次項(xiàng)產(chǎn)生的原因,從熟悉的實(shí)際背景中,很有可能從矩形的面積出發(fā),設(shè)計(jì)情境.
【設(shè)計(jì)意圖】讓學(xué)生從“接受式”的學(xué)習(xí)方式中走出來,走向?qū)σ辉畏匠坍a(chǎn)生的根源的探求,在編制情境的過程中,他們將加深對(duì)一元二次方程概念的理解.部分學(xué)生能夠獨(dú)立解決問題,自己編制情境并列出方程,部分學(xué)生可以根據(jù)同學(xué)給出的情境去列方程,或者閱讀課本上的實(shí)際問題.
(二)拓寬情境,概括概念 給出課本問題
1、問題2的兩個(gè)實(shí)際問題,設(shè)未知數(shù),建立方程.
問題1 如圖21.1-1,有一塊矩形鐵皮,長(zhǎng)100 cm,寬50 cm.在它的四個(gè)角各切去一個(gè)同樣的正方形,然后將四周突出的部分折起,就能制作一個(gè)無蓋方盒.如果要制作的無蓋方盒的底面積是3 600 cm2,那么鐵皮各角應(yīng)切去多大的正方形?
問題2 要組織一次排球邀請(qǐng)賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng),根據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,你說組織者應(yīng)邀請(qǐng)多少個(gè)隊(duì)參賽?
教師引導(dǎo)學(xué)生思考并回答以下幾個(gè)問題: 全部比賽共有______場(chǎng)
若設(shè)應(yīng)邀請(qǐng)個(gè)隊(duì)參賽,則每個(gè)隊(duì)要與其他____個(gè)隊(duì)各賽一場(chǎng),全部比賽共有___ 場(chǎng). 由此,我們可以列出方程______________,化簡(jiǎn)得________________. 問題3. 這些方程是幾元幾次方程?
師生活動(dòng):學(xué)生將實(shí)際問題中的語言轉(zhuǎn)化成數(shù)學(xué)的符號(hào)語言,體會(huì)運(yùn)算關(guān)系,尋找等量關(guān)系,學(xué)習(xí)建模.將列得的方程化簡(jiǎn)整理,判斷出方程的次數(shù).
【設(shè)計(jì)意圖】在建模的過程中不僅加強(qiáng)學(xué)生的數(shù)學(xué)思維能力,而且對(duì)二次項(xiàng)產(chǎn)生的根源將更加明晰,加深對(duì)一元二次方程的理解.讓學(xué)生回答方程的元與次,一是讓他們體會(huì)統(tǒng)一成一般形式的必要性,為概念的形成做鋪墊,分解教學(xué)的難點(diǎn);二是讓他們明確教學(xué)的主線,從被動(dòng)學(xué)習(xí)走向主動(dòng)學(xué)習(xí).
問題4. 這些方程是什么方程?
師生活動(dòng):觀察本課得出的一些方程,思考它們的共性,同學(xué)們嘗試給出一元二次方程的定義,并且概括出一元二次方程的一般形式.
1.一元二次方程的概念:
等號(hào)兩邊都是整式,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2(二次)的方程叫做一元二次方程.
2.一元二次方程的一般形式是.其中是二次項(xiàng),a是二次項(xiàng)系數(shù);是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
【設(shè)計(jì)意圖】讓學(xué)生自己給出定義就是對(duì)過去所學(xué)一元一次方程的定義的類比和對(duì)比,概括一般形式是對(duì)一元二次方程另一個(gè)角度的理解,是對(duì)數(shù)學(xué)符號(hào)語言的應(yīng)用能力的提升.
(三)辨析應(yīng)用,加深理解
問題5. 請(qǐng)你說出一個(gè)一元二次方程,和一個(gè)不是一元二次方程的方程.
師生活動(dòng):可以由學(xué)生舉手回答,也可以隨機(jī)選擇學(xué)生回答,調(diào)動(dòng)學(xué)生廣泛的參與.追問學(xué)生所舉的反例為什么不是一元二次方程?是什么方程?
【設(shè)計(jì)意圖】學(xué)生自己舉例,應(yīng)用概念,從正反兩個(gè)方向強(qiáng)化了對(duì)概念的理解,在追問的過程中,幫助學(xué)生將已有的方程梳理成比較清晰的知識(shí)體系,開發(fā)學(xué)生認(rèn)識(shí)的資源,激發(fā)學(xué)生從不同角度、不同形式去深入理解同一概念,讓不同的學(xué)生在此過程中獲得不同的收獲,實(shí)現(xiàn)分層教學(xué)分層指導(dǎo)的效果.
問題6. 下列方程哪些是一元二次方程? 例1.下列方程哪些是一元二次方程?(1)(2); ;(3)(4)(5)(6);
; ; .
答案(2)(5)(6).
師生活動(dòng):用概念指導(dǎo)辨析,方程(3)與(4)同學(xué)們可能會(huì)產(chǎn)生爭(zhēng)議,(3)幫助學(xué)生明確一元二次方程是整式方程,(4)體會(huì)化為一般形式的必要性,對(duì)a≠0條件加深認(rèn)識(shí).
【設(shè)計(jì)意圖】補(bǔ)足學(xué)生所舉正反例的缺漏,追問:有二次項(xiàng)的一元方程就是一元二次方程嗎?幫助學(xué)生進(jìn)一步鞏固概念,深化對(duì)一元、二次的認(rèn)識(shí).
問題7.指出下列方程的二次項(xiàng)、一次項(xiàng)和常數(shù)項(xiàng)及它們的系數(shù).
例2. 將下列方程化為一般形式,并分別指出它們的二次項(xiàng)、一次項(xiàng)和常數(shù)項(xiàng)及它們的系數(shù):
(1)師生活動(dòng):(1)將方程,其中二次項(xiàng)是;(2)
去括號(hào)得:,二次項(xiàng)系數(shù)是3;一次項(xiàng)是,過程略.,在什么條件下此方程為一元二次方程?在什么條件,時(shí)此方程為一元一次方程.,移項(xiàng),合并同類項(xiàng)得:,一次項(xiàng)系數(shù)是,常數(shù)項(xiàng)是.教師應(yīng)及時(shí)分析可能出現(xiàn)的問題(比如系數(shù)的符號(hào)問題).(2)一元二次方程的一般形式是例3.關(guān)于x的方程下此方程為一元一次方程?
答案:時(shí)此方程為一元二次方程;【設(shè)計(jì)意圖】在形式比較復(fù)雜的方程面前,通過辨析方程的元、次、項(xiàng)看清方程的本質(zhì),深化理解,淡化對(duì)一元二次方程概念的記憶.
(四)鞏固概念,學(xué)以致用 教科書第4頁(yè): 練習(xí)【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)一元二次方程概念的掌握情況.
(五)歸納小結(jié),反思提高
請(qǐng)學(xué)生總結(jié)今天這節(jié)課所學(xué)內(nèi)容,通過對(duì)比之前所學(xué)其它方程,談對(duì)一元二次方程概念的認(rèn)識(shí),反思學(xué)習(xí)過程中的典型錯(cuò)誤.
(六)布置作業(yè):教科書習(xí)題21.1 復(fù)習(xí)鞏固:第1,2,3題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.下列方程哪些是關(guān)于x的一元二次方程(1);(2)
;(3)
;(4)
.
【設(shè)計(jì)意圖】考查對(duì)一元二次方程概念的理解. 2.關(guān)于的方程A. B.
C.的條件. 【設(shè)計(jì)意圖】考查
是一元二次方程,則().
D.
3.將關(guān)于的一元二次方程化為一般形式,并指出二次項(xiàng)系數(shù). 【設(shè)計(jì)意圖】考查化簡(jiǎn)方程的能力,及對(duì)一元二次方程一般式的掌握情況.
第三篇:一元二次方程教學(xué)設(shè)計(jì)
一元二次方程教學(xué)設(shè)計(jì)
海門市海南中學(xué) 顧 健
學(xué)習(xí)目標(biāo):
1.類比一元一次方程,自主探究一元二次方程的定義.2.知道一元二次方程的一般形式和方程的解,會(huì)解簡(jiǎn)單方程.3.經(jīng)歷觀察、思考、討論等探究過程,發(fā)展自主學(xué)習(xí)的能力,感悟“從特殊到一般”“轉(zhuǎn)化”“類比”等數(shù)學(xué)思想方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).4.通過合作、交流,進(jìn)一步學(xué)會(huì)互助、共享,并與同伴得到共同提高.教學(xué)重難點(diǎn):一元二次方程的定義和一般式,會(huì)解簡(jiǎn)單方程.教學(xué)過程:
一、在復(fù)習(xí)回顧中,引導(dǎo)學(xué)生類比一元一次方程自主探究一元二次方程定義 1.自主回顧
已知矩形的長(zhǎng)比寬大1厘米
問題(1)若矩形的周長(zhǎng)是6厘米,求寬。你會(huì)求解嗎?你準(zhǔn)備怎么做?
問題(2)若矩形的面積是6平方厘米,求寬。你會(huì)求解嗎?你準(zhǔn)備怎么做? 2.類比歸納
問題(1)中的等式你學(xué)過嗎?是什么方程?你是怎么知道的?(化簡(jiǎn)整理)你能回憶一元一次方程的定義嗎?(學(xué)生補(bǔ)充)你知道一元一次方程的一般式嗎? 追問:a為什么不等于0?b呢? 還學(xué)習(xí)了一元一次方程的哪些內(nèi)容?
問題(2)中的等式你認(rèn)識(shí)嗎?你是怎么知道的?(一個(gè)未知數(shù)、最高次是
2、整式方程)你能歸納一元二次方程的定義嗎? 3.你能舉出一些一元二次方程的例子嗎?(轉(zhuǎn)化后介紹項(xiàng)、系數(shù)、常數(shù))4.你能歸納一元二次方程的一般式嗎?
追問:a為什么不等于0?b呢?C呢?(正確尋找a、b、c)
二、在合作交流中,引導(dǎo)學(xué)生分享方法,歸納方程解法 1.什么是方程的解?(能使等號(hào)兩邊相等的未知數(shù)的值)
什么是一元二次方程的解?
2.如何解一元一次方程?(形成x=a)它的解有幾個(gè)?
3.猜想:如何解一元二次方程?嘗試解黑板上的一元二次方程。(先獨(dú)立完成2分鐘,再在小組內(nèi)交流)4.展示方法,你的依據(jù)是什么?
5.歸納方法,比較一元二次方程的解與一元一次方程的區(qū)別與聯(lián)系。(降次思想、轉(zhuǎn)化思想)
三、共同反思,小結(jié)提升
1.你是如何理解一元二次方程的定義的? 2.你對(duì)一元二次方程中的a、b、c有怎樣的認(rèn)識(shí)?
3.一元二次方程的解有怎樣的特點(diǎn)?今天你學(xué)會(huì)了哪些方法解一元二次方程? 4.通過今天對(duì)一元二次方程的學(xué)習(xí),你積累了哪些重要的學(xué)習(xí)方法和經(jīng)驗(yàn)?
第四篇:一元二次方程教學(xué)設(shè)計(jì)
一元二次方程教學(xué)設(shè)計(jì) 天津四中李可
教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)技能
1、理解一元二次方程的概念.2、掌握一元二次方程的一般形式,正確認(rèn)識(shí)二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).教學(xué)思考
1、通過一元二次方程的引入,培養(yǎng)學(xué)生建模思想,歸納、分析問題及解決問題的能力.2、通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性.3、由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)、列方程向?qū)W生滲透方程的思想,從而進(jìn)一步提高學(xué)生分析問題、解決問題的能力.解決問題
在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,增加對(duì)一元二次方程的感性認(rèn)識(shí).情感態(tài)度
1、培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、自主學(xué)習(xí)和合作交流的意識(shí).2、激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會(huì)學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識(shí).重點(diǎn)
一元二次方程的概念及一般形式.難點(diǎn)
1、由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.2、正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”.教學(xué)流程安排
活動(dòng)流程圖
活動(dòng)內(nèi)容和目的活動(dòng)1
創(chuàng)設(shè)情境引入新課
活動(dòng)2
啟發(fā)探究獲得新知
活動(dòng)3
運(yùn)用新知體驗(yàn)成功
活動(dòng)4
歸納小結(jié)拓展提高
活動(dòng)5
布置作業(yè)分層落實(shí)
復(fù)習(xí)一元一次方程有關(guān)概念;通過實(shí)際問題引入新知。
通過類比一元一次方程的概念和一般形式,讓學(xué)生獲得一元二次方程的有關(guān)概念。
鞏固訓(xùn)練,加深對(duì)一元二次方程有關(guān)概念的理解。
回顧梳理本節(jié)內(nèi)容,拓展提高學(xué)生對(duì)知識(shí)的理解。
分層次布置作業(yè),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)過程設(shè)計(jì)
問題與情景
師生行為
設(shè)計(jì)意圖
「活動(dòng)1」
問題1:
2008年奧運(yùn)會(huì)將在北京舉辦,許多大學(xué)生都希望為奧運(yùn)奉獻(xiàn)自己的一份力量?,F(xiàn)組委會(huì)決定對(duì)高校奧運(yùn)志愿者進(jìn)行分批培訓(xùn),由已合格人員培訓(xùn)第一輪人員,再由前面所有合格人員培訓(xùn)第二輪人員,以此類推來完成此次培訓(xùn)任務(wù)。
某高校學(xué)生李紅已受訓(xùn)合格,成為一名志愿者,并由她負(fù)責(zé)培訓(xùn)本校志愿者。若每輪培訓(xùn)中每個(gè)志愿者平均培訓(xùn)x人。
(1)已知經(jīng)過第一輪培訓(xùn)后該校共有11人合格, 請(qǐng)列出滿足條件的方程:
(2)若兩輪培訓(xùn)后該校共有121人合格,你能列出滿足條件的方程嗎?
問題2:
有一塊矩形鐵皮,長(zhǎng)100cm,寬50cm,在它的四角各切去一個(gè)正方形,然后將四周突出部分折起,就能制作一個(gè)無蓋方盒.如果要制作的無蓋方盒底面積為3600cm2,那么鐵皮各角應(yīng)切去多大的正方形?
問題3:
我校為豐富校園文化氛圍,要設(shè)計(jì)一座2米高的人體雕像,使雕像的上部(腰以上)與全部高度的乘積,等于下部(腰以下)高度的平方,求雕像下部的高度.通過多媒體播放視頻短片,引入情境,提出問題.在第(1)問中,通過教師引導(dǎo),學(xué)生列出方程,解決問題.在第(2)問中,遵循剛才解決問題的思路,由學(xué)生思考,列出方程.活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
學(xué)生對(duì)題目的理解,可舉例,由特殊到一般,幫助學(xué)生理解題意,從而引導(dǎo)學(xué)會(huì)列出滿足條件的方程
通過多媒體演示,把文字轉(zhuǎn)化為圖形,幫助學(xué)生理解題意,從而由學(xué)生獨(dú)立思考,列出滿足條件的方程.此題是與實(shí)際問題結(jié)合的題目,通過演示高度關(guān)系,幫助學(xué)生理解題意,從而列出符合題意的方程。
通過創(chuàng)設(shè)情境,引導(dǎo)學(xué)生復(fù)習(xí)一元一次方程的概念和一般形式,為后面學(xué)習(xí)一元二次方程的有關(guān)內(nèi)容做好鋪墊.通過解決實(shí)際問題引入一元二次方程的概念,同時(shí)可提高學(xué)生利用方程思想解決實(shí)際問題的能力.通過解決實(shí)際問題引入一元二次方程的概念.讓學(xué)生通過數(shù)形結(jié)合的方法,轉(zhuǎn)化實(shí)際問題,從而得到方程,為引入一元二次方程的概念做好準(zhǔn)備.問題與情景
師生行為
設(shè)計(jì)意圖
「活動(dòng)2」
1、一元二次方程的概念:
等號(hào)兩邊都是整式,只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程。
眼疾口快: 請(qǐng)搶答下列各式是否為一元二次方程:
2、2、一元二次方程的一般式:
3、由以上問題得到3個(gè)方程,由學(xué)生觀察歸納這3個(gè)方程的特征,給出名稱并類比一元一次方程的定義,得出一元二次方程的定義.活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
(1)
引導(dǎo)學(xué)生觀察所列出的3個(gè)方程的特點(diǎn);
(2)
讓學(xué)生類比前面復(fù)習(xí)過的一元一次方程定義得到一元二次方程定義.(3)
強(qiáng)調(diào)定義中體現(xiàn)的3個(gè)特征:
①整式;②一元;③2次.由學(xué)生以搶答的形式來完成此題,并讓學(xué)生找出錯(cuò)誤理由.其中(1)~(6)題較為簡(jiǎn)單,學(xué)生可非常容易給出答案;而(7),(8)兩題有一定難度,(7)需要進(jìn)行分類討論.此活動(dòng)中,教師應(yīng)注意對(duì)學(xué)生給出的答案作出點(diǎn)評(píng)和歸納.引導(dǎo)學(xué)生類比一元一次方程的一般形式,總結(jié)歸納一元二次方程的一般形式及項(xiàng)、系數(shù)的概念.讓學(xué)生充分感受所列方程的特點(diǎn),再通過類比的方法得到定義,從而達(dá)到真正理解定義的目的.這組練習(xí)目的在于鞏固學(xué)生對(duì)一元二次方程定義中3個(gè)特征的理解.(7),(8)兩個(gè)題目的設(shè)置,目的在于進(jìn)一步加深學(xué)生對(duì)定義的掌握,尤其結(jié)合字母系數(shù),加大題目難度,提高學(xué)生對(duì)變式的理解能力.此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.此環(huán)節(jié)讓學(xué)生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項(xiàng),系數(shù)的概念,從而達(dá)到真正理解并掌握的目的.問題與情境
師生行為
設(shè)計(jì)意圖
試一試:
下面給出了某個(gè)方程的幾個(gè)特點(diǎn):
(1)它的一般形式為
(2)它的二次項(xiàng)系數(shù)為5;
(3)常數(shù)項(xiàng)是一次項(xiàng)系數(shù)的倒數(shù)的相反數(shù)。
「活動(dòng)3」
例1.天津四中為樹立學(xué)生的團(tuán)結(jié)、拼搏精神,組織了一次籃球比賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng),依據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,請(qǐng)問全校有多少個(gè)隊(duì)參賽?(列方程并整理成一般形式)
先由教師在大屏幕上顯示問題,由學(xué)生經(jīng)過思考,給出符合條件的答案,全體學(xué)生進(jìn)行判斷是否正確.在此環(huán)節(jié)可設(shè)置一個(gè)小游戲,讓答對(duì)學(xué)生給出類似條件,找其他同學(xué)回答給出的新問題,讓大家進(jìn)行判斷給出的方程是否正確.此環(huán)節(jié)中,教師應(yīng)注意板書學(xué)生給出的方程要,并且及時(shí)引導(dǎo)學(xué)生不要給出類似的條件.此題為與實(shí)際問題結(jié)合的題目,讓學(xué)生思考解決問題的方法,列出滿足題意的方程.以此題為例,教師板書整理一元二次方程的過程,讓學(xué)生學(xué)會(huì)如何整理任意一元二次方程的一般形式,并能準(zhǔn)確找到各項(xiàng)系數(shù).教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
(1)由一個(gè)學(xué)生列出方程,并解釋解題方法,教師進(jìn)行引導(dǎo),點(diǎn)評(píng),引起其他學(xué)生的關(guān)注,認(rèn)同.(2)教師在歸納點(diǎn)評(píng)過程中,應(yīng)注意把兩隊(duì)只打一場(chǎng)比賽解釋清楚,以便學(xué)生理解題意.(3)整理一般形式后,教師應(yīng)強(qiáng)調(diào)整理過程中應(yīng)用到的等式變形方法,如去括號(hào),移項(xiàng),合并同類項(xiàng),去分母等.(4)讓學(xué)生指出各項(xiàng)系數(shù)時(shí),教師強(qiáng)調(diào)系數(shù)須帶符合.此題設(shè)置的目的在于加深學(xué)生對(duì)一般形式的理解
采取游戲的形式以提高學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的興趣,參與課堂活動(dòng)的積極性,還可鼓勵(lì)學(xué)生課下繼續(xù)以合作的形式進(jìn)行學(xué)習(xí).整理一元二次方程的一般形式為本節(jié)課的重點(diǎn),由實(shí)際問題出發(fā)列方程為本節(jié)的難點(diǎn),所以在此設(shè)置此題,加強(qiáng)鞏固練習(xí).由籃球比賽引入題目,可激發(fā)學(xué)生興趣,引起學(xué)生關(guān)注.此題有在實(shí)際生活中應(yīng)用的意義,通過此題讓學(xué)生理解比賽賽制安排原則.問題與情境
師生行為
設(shè)計(jì)意圖
小試牛刀: 你能否把下列方程整理成一般形式?
例
2、當(dāng)m取何值時(shí),方程
是關(guān)于x的一元二次方程?
考考你: 判斷下列關(guān)于x的方程是否是一元二次方程:
(為有理數(shù));
「活動(dòng)4」 1.問題:
本節(jié)課你又學(xué)會(huì)了哪些新知識(shí)?
2.思維拓展:
若方程x2m+n +xm-n +3=0是關(guān)于x的一元二次方程,求m,n的值。
鞏固練習(xí)學(xué)生整理一般形式的方法,并準(zhǔn)確找出各項(xiàng)系數(shù).此環(huán)節(jié)可找學(xué)生口答結(jié)果.此題是字母系數(shù)問題,由學(xué)生思考解題過程,讓學(xué)生講解此題,教師進(jìn)行總結(jié)點(diǎn)評(píng).大屏幕顯示解題過程.此題由學(xué)生思考,討論,并由學(xué)生給出結(jié)果并進(jìn)行解釋.此活動(dòng)過程中,教師應(yīng)重點(diǎn)關(guān)注:
(1)此題目在上一題的基礎(chǔ)上繼續(xù)加大難度,第(1)題須強(qiáng)調(diào)先進(jìn)行整理,再考慮二次項(xiàng)系數(shù)是否為零;第(2)題須先求出m值,再代入二次項(xiàng)系數(shù)中,驗(yàn)證是否為0,得到結(jié)果.(2)學(xué)生解答過程中,教師把學(xué)生整理的一般形式書寫在黑板上,以便全體學(xué)生理解.學(xué)生反思本節(jié)課中學(xué)到的知識(shí),總結(jié)活動(dòng)中的經(jīng)驗(yàn)。
小結(jié)時(shí),教師應(yīng)重點(diǎn)關(guān)注:
(1)學(xué)生是否能抓住本節(jié)課的重點(diǎn);
(2)學(xué)生是否掌握一些基本方法。
此題讓學(xué)生進(jìn)行思考,討論,讓學(xué)生進(jìn)行講解,教師作適當(dāng)歸納,可留疑,讓學(xué)生課下思考。
讓學(xué)生再思考,若題目
讓學(xué)生落實(shí)將剛才教師板書的整理一般形式的過程,再次突出本節(jié)課的重點(diǎn)內(nèi)容
此題為一元二次方程概念中常見題型,通過此題讓學(xué)生加深對(duì)定義和一般形式的理解,為其他字母系數(shù)問題做好準(zhǔn)備。
此題仍涉及字母系數(shù)問題,難度加大,以達(dá)到讓學(xué)生掌握本節(jié)課重難點(diǎn)的目的.通過此題讓學(xué)生掌握解此類字母系數(shù)題目的方法,以及整理一般形式對(duì)于解一元二次方程題目的重要性
小結(jié)反思中,不同學(xué)生有不同的體會(huì),要尊重學(xué)生的個(gè)體差異,激發(fā)學(xué)生主動(dòng)參與意識(shí),.為每個(gè)學(xué)生都創(chuàng)造了數(shù)學(xué)活動(dòng)中獲得活動(dòng)經(jīng)驗(yàn)的機(jī)會(huì)。
此題需進(jìn)行分類討論,開拓學(xué)生思維,體現(xiàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
「活動(dòng)5」
課后作業(yè):
(A)教科書第98頁(yè)習(xí)題17.1第1、2、5、6、7題.(B)請(qǐng)根據(jù)所給方程:
(16-2x)(10-2x)=112,聯(lián)系實(shí)際,編寫一道應(yīng)用題
(要求題目完整,題意清楚,不要求解方程)。
中“+”變成“-”時(shí),如何解決,留作課下思考。
(A)組題目為鞏固型作業(yè),即必做題。
(B)組題目為思維拓展型作業(yè),即為學(xué)有余力的學(xué)生設(shè)置。
分層次布置作業(yè),尊重學(xué)生的個(gè)體差異,激發(fā)學(xué)生學(xué)習(xí)積極性。
教學(xué)設(shè)計(jì)說明
本節(jié)課是一元二次方程的第一課時(shí),通過對(duì)本節(jié)課的學(xué)習(xí),學(xué)生將掌握一元二次方程的定義、一般形式、及有關(guān)概念,并學(xué)會(huì)利用方程解決實(shí)際問題。在教學(xué)過程中,注重中難點(diǎn)的體現(xiàn)。在本節(jié)課的活動(dòng)1中,通過實(shí)際問題引入學(xué)生熟悉的一元一次方程,讓學(xué)生掌握利用方程解決問題,從而順利過渡到后面的問題?;顒?dòng)2中讓學(xué)生觀察活動(dòng)1中得到的3個(gè)方程,并通過類比一元一次方程的定義和一般形式,從而獲得本課的新知識(shí)?;顒?dòng)3意在強(qiáng)化學(xué)生所學(xué)知識(shí),并運(yùn)用到實(shí)際問題中去。
教學(xué)過程中,應(yīng)隨時(shí)注意學(xué)生們出現(xiàn)的問題,及時(shí)進(jìn)行反饋,使學(xué)生熟練掌握所學(xué)知識(shí)。
第五篇:《一元二次方程》參考教案
21.1 一元二次方程教學(xué)內(nèi)容
本節(jié)課主要學(xué)習(xí)一元二次方程概念及一元二次方程一般式及有關(guān)概念.
教學(xué)目標(biāo)
知識(shí)技能
探索一元二次方程及其相關(guān)概念,能夠辨別各項(xiàng)系數(shù);能夠從實(shí)際問題中抽象出方程知識(shí).
數(shù)學(xué)思考
在探索問題的過程中使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界的一個(gè)模型,體會(huì)方程與實(shí)際生活的聯(lián)系.
解決問題
培養(yǎng)學(xué)生良好的研究問題的習(xí)慣,使學(xué)生逐步提高自己的數(shù)學(xué)素養(yǎng).
情感態(tài)度
通過用一元二次方程解決身邊的問題,體會(huì)數(shù)學(xué)知識(shí)應(yīng)用的價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對(duì)促進(jìn)社會(huì)進(jìn)步和發(fā)展人類理性精神的作用.
重難點(diǎn)、關(guān)鍵
重點(diǎn):一元二次方程的定義、各項(xiàng)系數(shù)的辨別,根的作用. 難點(diǎn):根的作用的理解.
關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,?再由一元一次方程的概念遷移到一元二次方程的概念.
教學(xué)準(zhǔn)備
教師準(zhǔn)備:制作課件,精選習(xí)題
學(xué)生準(zhǔn)備:復(fù)習(xí)有關(guān)知識(shí),預(yù)習(xí)本節(jié)課內(nèi)容
教學(xué)過程
一、情境引入 【問題情境】
問題1 如圖,有一塊矩形鐵皮,長(zhǎng)100 cm,寬50 cm.在它的四個(gè)角分別切去一個(gè)正方形,然后將四周突出的部分折起,就能制作一個(gè)無蓋方盒.如果要制作的無蓋方盒的底面積是3 600 cm2,那么鐵皮各角應(yīng)切去多大的正方形?
問題2 要組織一次排球邀請(qǐng)賽,參賽的每?jī)蓚€(gè)隊(duì)之間都要比賽一場(chǎng).根據(jù)場(chǎng)地和時(shí)間等條件,賽程計(jì)劃安排7天,每天安排4場(chǎng)比賽,比賽組織者應(yīng)該邀請(qǐng)多少個(gè)隊(duì)參賽? 【活動(dòng)方略】
教師演示課件,給出題目.
學(xué)生根據(jù)所學(xué)知識(shí),通過分析設(shè)出合適的未知數(shù),列出方程回答問題. 【設(shè)計(jì)意圖】
由實(shí)際問題入手,設(shè)置情境問題,激發(fā)學(xué)生的興趣,讓學(xué)生初步感受一元二次方程,同時(shí)讓學(xué)生體會(huì)方程這一刻畫現(xiàn)實(shí)世界的數(shù)學(xué)模型.
二、探索新知 【活動(dòng)方略】
學(xué)生活動(dòng):請(qǐng)口答下面問題.
(1)上面幾個(gè)方程整理后含有幾個(gè)未知數(shù)?
(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號(hào)嗎?或與以前多項(xiàng)式一樣只有式子?
老師點(diǎn)評(píng):(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號(hào),是方程.
歸納:像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個(gè)關(guān)于x的一元二次方程,?經(jīng)過整理,?都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).
【設(shè)計(jì)意圖】
主體活動(dòng),探索一元二次方程的定義及其相關(guān)概念.
三、范例點(diǎn)擊 例1 將方程3x(x?1)?5(x?2)化成一元二次方程的一般形式,并指出各項(xiàng)系數(shù). 解:去括號(hào)得
0
3x2?3x?5x?1,移項(xiàng),合并同類項(xiàng),得一元二次方程的一般形式
3x2?8x?10?0.
其中二次項(xiàng)系數(shù)是3,一次項(xiàng)系數(shù)是-8,常數(shù)項(xiàng)是-10. 【活動(dòng)方略】 學(xué)生活動(dòng):
學(xué)生自主解決問題,通過去括號(hào)、移項(xiàng)等步驟把方程化為一般形式,然后指出各項(xiàng)系數(shù).
教師活動(dòng):
在學(xué)生指出各項(xiàng)系數(shù)的環(huán)節(jié)中,分析可能出現(xiàn)的問題(比如系數(shù)的符號(hào)問題). 【設(shè)計(jì)意圖】
進(jìn)一步鞏固一元二次方程的基本概念. 例2 猜測(cè)方程x2?x?56?0的解是什么? 【活動(dòng)方略】 學(xué)生活動(dòng):
學(xué)生可以采取多種方法得到方程的解,比如可以用嘗試的方法取x=1、2、3、4、5等,發(fā)現(xiàn)x=8時(shí)等號(hào)成立,于是x=8是方程的一個(gè)解,如此等等.
教師活動(dòng):
教師引導(dǎo)學(xué)生自主探索,多種途徑尋找方程的解,在此基礎(chǔ)上讓學(xué)生進(jìn)行總結(jié): 使一元二次方程等號(hào)兩邊相等的未知數(shù)的取值叫作一元二次方程的解(又叫作根). 【設(shè)計(jì)意圖】
探究一元二次方程根的概念以及作用.
四、反饋練習(xí)課本P4 練習(xí)1、2題 補(bǔ)充習(xí)題:
1.將方程(x+1)2+(x-2)(x+2)=?1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).
2.你能根據(jù)所學(xué)過的知識(shí)解出下列方程的解嗎?(1)x2?36?0;
【活動(dòng)方略】
學(xué)生獨(dú)立思考、獨(dú)立解題.
教師巡視、指導(dǎo),并選取兩名學(xué)生上臺(tái)書寫解答過程(或用投影儀展示學(xué)生的解答過程)
【設(shè)計(jì)意圖】
檢查學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握情況.五、應(yīng)用拓展
例3:求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17?≠0即可.
證明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不論m取何值,該方程都是一元二次方程.
例4:有人解這樣一個(gè)方程(x?5)(x?1)?7.
解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?
由(x?5)(x?1)?7得到x+5=1或x-1=7,應(yīng)該是x+5=1且x-1=7,同時(shí)成立才行,此時(shí)得到x=-4且x=8,顯然矛盾,因此上述解法是錯(cuò)誤的.
【活動(dòng)方略】
教師活動(dòng):操作投影,將例
3、例4顯示,組織學(xué)生討論. 學(xué)生活動(dòng):合作交流,討論解答?!驹O(shè)計(jì)意圖】
使學(xué)生進(jìn)一步理解一元二次方程的概念,對(duì)一元二次方程的根有更深刻的理解.(2)4x2?9?0. 作業(yè):