欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      勾股定理5篇范文

      時間:2019-05-14 02:01:40下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《勾股定理》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《勾股定理》。

      第一篇:勾股定理

      《勾股定理》說課稿

      尊敬的各位評委、老師,您們好,今天我說課的內容是人教版《數(shù)學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。

      一、教材分析:

      (一)教材的地位與作用 從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據,在現(xiàn)實生活中有著廣泛的應用。

      從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁; 勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。根據數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。

      (二)重點與難點

      為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。

      二、教學與學法分析

      教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

      學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

      三、教學過程

      我國數(shù)學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。

      首先,情境導入 古韻今風

      給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數(shù)學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。第二步 追溯歷史 解密真相

      勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學知識的循序漸進、螺旋上升的原則,我設計如下三個活動。

      從上面低起點的問題入手,有利于學生參與探索。學生很容易發(fā)現(xiàn),在等腰三角形中存在如下關系。巧妙的將面積之間的關系轉化為邊長之間的關系,體現(xiàn)了轉化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結合的思想。學生會想到用“數(shù)格子”的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學生利用“割”和“補”的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學生因作圖不準確而產生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學生將展示“割”的方法,“補”的方法,有的學生可能會發(fā)現(xiàn)平移的方法,旋轉的方法,對于這兩種新方法教師應給于表揚,肯定學生的研究成果,培養(yǎng)學生的類比、遷移以及探索問題的能力。

      使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關系可視化。當為直角三角形時,改變三邊長度三邊關系不變,當∠α為銳角或鈍角時,三邊關系就改變了,進而強調了命題成立的前提條件必須是直角三角形。加深學生對勾股定理理解的同時也拓展了學生的視野。

      以上三個環(huán)節(jié)層層深入步步引導,學生歸納得到命題1,從而培養(yǎng)學生的合情推理能力以及語言表達能力。

      感性認識未必是正確的,推理驗證證實我們的猜想。第三步 推陳出新 借古鼎新

      教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學生是學習的主體,教師是組織者、引導者與合作者”這一教學理念。學生會發(fā)現(xiàn)兩種證明方案。

      方案1為趙爽弦圖,學生講解論證過程,再現(xiàn)古代數(shù)學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

      教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數(shù)學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數(shù)學的精巧、優(yōu)美。

      第四步 取其精華 古為今用

      我按照“理解—掌握—運用”的梯度設計了如下三組習題。(1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用 第五步 溫故反思 任務后延 在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

      然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學生的理念。

      四、教學評價

      在探究活動中,教師評價、學生自評與互評相結合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。

      五、設計說明

      本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

      以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

      第二篇:勾股定理范文

      勾股定理

      勾股定理,又稱“畢達哥拉斯定理”,是初等幾何中的一個基本定理。這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往今來,上至帝王總統(tǒng),下至平民百姓,都愿意探討和研究它的證明。它是幾何學中一顆閃亮的明珠。

      所謂勾股,就是古人把彎曲成一個直角三角形模樣的手臂,上臂(即直角三角形的底邊)稱為“勾”,前臂(即直角三角形的高)稱為“股”,所以稱之為“勾股”。也許是因為勾股定理十分實用,所以便反復被人們論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理證明專輯。從勾股定理的發(fā)現(xiàn)到現(xiàn)在,大約3000年里,勾股定理的證明方法多種多樣:有的簡潔明了,有的略微復雜,有的十分精彩……本文將會帶著大家一起來證明勾股定理并解決一些實際問題。

      勾股定理、證明、解決實際問題 什么是勾股定理?

      又稱商高定理,而更普遍地則稱為勾股定理。中國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。

      勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”,而且在高等數(shù)學和其他學科中也有著極為廣泛的應用。正因為這樣,世界上幾個文明古國都已發(fā)現(xiàn)并且進行了廣泛深入的研究,因此有許多名稱。

      中國是發(fā)現(xiàn)和研究勾股定理最古老的國家之一。中國古代數(shù)學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。還有的國家稱勾股定理為“畢達哥拉斯定理”。

      在陳子后一二百年,希臘的著名數(shù)學家畢達哥拉斯發(fā)現(xiàn)了這個定理,因此世界上許多國家都稱勾股定理為“畢達哥拉斯”定理。為了

      慶祝這一定理的發(fā)現(xiàn),畢達哥拉斯學派殺了一百頭牛酬謝供奉神靈,因此這個定理又有人叫做“百牛定理”。

      蔣銘祖定理:蔣銘祖是公元前十一世紀的中國人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰(zhàn)國時期西漢的數(shù)學著作《蔣銘祖算經》中記錄著商 高同周公的一段對話。蔣銘祖說:“…故折矩,勾廣三,股修四,經隅五。”蔣銘祖那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以后人們就簡單地把這個事實說成“勾三股四弦五”。這就是著名的蔣銘祖定理,關于勾股定理的發(fā)現(xiàn),《蔣銘祖算經》上說:“故禹之所以治天下者,此數(shù)之所由生也;”“此數(shù)”指的是“勾三股四弦五”。這句話的意思就是說:勾三股四弦五這種關系是在大禹治水時發(fā)現(xiàn)的。勾股定理的發(fā)現(xiàn)

      相傳畢達哥拉斯在在一次散步中,偶然看見了地上由幾塊三角形瓷磚拼成的一個長方形瓷磚,如圖:

      畢達哥拉斯靈機一動,用手在上面比劃了起來。大家看,以直角三角形各邊為正方形的邊長,可拼出不同的正方形。以直角三角形斜邊為正方形邊長,可拼出一個這樣的正方形:

      其面積為:直角三角形斜邊的平方

      其中有四塊直角三角形。

      以直角三角形底和高做正方形邊長,可拼出一個這樣的正方形: 其面積為:底邊(高)的平方 其中有兩塊直角三角形。

      因為長方形瓷磚面積不變,所以所有第二種正方形面積和與所有第一種正方形面積和相等。因此畢達哥拉斯得出這樣一個結論:在一個直角三角形中,底邊的平方+高的平方=斜邊的平方。這就是勾股定理。

      勾股定理的證明

      勾股定理證明方法有很多,下面這種是一位名叫茄菲爾德的美國總統(tǒng)證明的:

      勾股定理的運用

      說了這么多,也許有人會問“勾股定理有什么用呢?”

      其實,勾股定理對我們的生活幫助可不??!尤其是在測量、建筑方面。下面,讓我們來解決一下實際問題吧!

      有一座山,高500米。在山腳下,有兩個登山口,它們之間的距離是2400米。登山路沿著山的斜面修建(如圖),我們從左面的登山口上山,到山頂?shù)木嚯x是多少?

      這道題看似與勾股定理沒什么關系,但是仔細看圖,這是一個直角三角形!

      已知直角三角形的斜邊是2400米,要求其中一條直角邊,我們應先做輔助線,將這座山分成兩半:

      這樣,問題就轉化成了求這左邊這半直角三角形的斜邊。原底邊的長度是2400,現(xiàn)在是一半,即為1200,另一條直角邊是500。根據勾股定理,底邊2+高2=斜邊2,計算時,把1200寫成12,把500寫成5,即122+52=25+144=169,多少的平方是169呢?答案是13,因為前面的1200和500縮小了100倍,所以13要擴大100倍,即1300。所以登山路的長度是1300米。總結

      這就是勾股定理的妙用,還不止這些。尤其是測量三個地方之間的距離時,勾股定理是我們的一大幫手。總之,勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”,而且在高等數(shù)學和其他學科中也有著極為廣泛的應用。它的主要意義有:

      1、勾股定理是聯(lián)系數(shù)學中最基本也是最原始的兩個對象——數(shù)與形的第一定理。

      2、勾股定理導致不可通約量的發(fā)現(xiàn),從而深刻揭示了數(shù)與量的區(qū)別,即所謂“無理數(shù)"與有理數(shù)的差別,這就是所謂第一次數(shù)學危機。

      3、勾股定理開始把數(shù)學由計算與測量的技術轉變?yōu)樽C明與推理的科學。

      4、勾股定理中的公式是第一個不定方程,也是最早得出完整解答的不定方程,它一方面引導到各式各樣的不定方程,另一方面也為不定方程的解題程序樹立了一個范式。

      第三篇:勾股定理[推薦]

      定義

      在任何一個直角三角形中,兩條直角邊的長的平方和等于斜邊長的平方,這就叫做勾股定理。即勾的平方加股的平方等于弦的平方

      勾股定理(6張)。

      簡介

      勾股定理是余弦定理的一個特例。這個定理在中國又稱為“商高定理”,在外國稱為“畢達哥拉斯定理”或者“百牛定理“。(畢達哥拉斯發(fā)現(xiàn)了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”),法國、比利時人又稱這個定理為“驢橋定理”(驢橋定理——歐幾里得《幾何原本》第一篇的前5個命題是:命題1:以已知線段為邊,求作一等 邊三角形。命題2:求以已知點為端點,作一線段與已知線段相等。命題3:已知大小兩線段,求在大線段上截取一線段與小線段相等。命題4:兩三角形的兩邊及其夾角對應相等,則這兩個三角形全等。命題5:等腰三角形兩底角相等。他們發(fā)現(xiàn)勾股定理的時間都比中國晚(中國是最早發(fā)現(xiàn)這一幾何寶藏的國家)。目前初二學生開始學習,教材的證明方法大多采用趙爽弦圖,證明使用青朱出入圖。勾股定理是一個基本的幾何定理,它是用代數(shù)思想解決幾何問題的最重要的工具之一,也是數(shù)形結合的紐帶之一。直角三角形兩直角邊的平方和等于斜邊的平方。如果用a、b和c分別表示直角三角形的兩直角邊和斜邊,那么a^2+b^2=c^2。

      勾股定理指出

      直角三角形兩直角邊(即“勾”“股”短的為勾,長的為股)邊長平方和等于斜邊(即“弦”)邊長的平方。也就是說設直角三角形兩直角邊為a和b,斜邊為c,那么a的平方+b的平方=c的平方 a^2+b^2=c^2 勾股定理現(xiàn)發(fā)現(xiàn)約有500種證明方法,是數(shù)學定理中證明方法最多的定理之一。中國古代著名數(shù)學家商高說:“若勾三,股四,則弦五?!彼挥涗浽诹恕毒耪滤阈g》中。

      勾股數(shù)組

      滿足勾股定理方程a2+b2=c2;的正整數(shù)組(a,b,c)。例如3、4、5(即勾

      三、股

      四、弦五)就是一組勾股數(shù)組。由于方程中含有3個未知數(shù),故勾股數(shù)組有無數(shù)多組。勾股數(shù)組的通式:a=M^2-N^2b=2MNc=M^2+N^2(M>N,M,N為正整數(shù))推廣

      1、如果將直角三角形的斜邊看作二維平面上的向量,將兩直角邊看作在平面直角坐標系坐標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等于它在其所在空間一組正交基上投影長度的平方之和。2.勾股定理是余弦定理的特殊情況。勾股定理

      曲安京:商高、趙爽與劉徽關于勾股定理的證明??凇稊?shù)學傳播》20卷,臺灣,1996年9月第3期,20-27頁?!吨荀滤憬洝?文物出版社,1980年3月,據宋代嘉定六年本影印,1-5頁。陳良佐:周髀算經勾股定理的證明與出入相補原理的關系??凇稘h學研究》,1989年第7卷第1期,255-281頁。李國偉:論《周髀算經》“商高曰數(shù)之法出于圓方”章。刊于《第二屆科學史研討會匯刊》,臺灣,1991年7月,227-234頁。李繼閔:商高定理辨證??凇蹲匀豢茖W史研究》,1993年第12卷第1期,29至41頁。

      第四篇:勾股定理復習

      《勾股定理復習》說課稿

      李小英

      一、教學內容與學情分析

      1、本課內容在教材、新課標中的地位和作用

      本節(jié)內容是《勾股定理》的復習。本章是以“勾股定理——平方根——立方根——實數(shù)——近似數(shù)與有效數(shù)字——勾股定理的應用”為線索展開的,溝通勾股定理、平方根、立方根、實數(shù)之間的聯(lián)系,力圖體現(xiàn)本套教材“數(shù)與代數(shù)”和“空間與圖形”內容整合設計思路,本節(jié)是復習的第一課時,主要內容是勾股定理的復習。

      勾股定理是初中數(shù)學中的重要內容,它不僅溝通了數(shù)與形之間的聯(lián)系,而且也是解決其他許多數(shù)學問題和實際問題的有力工具,歷來都是考試的重要知識點。新課標對這一內容明確要求:會運用勾股定理解決簡單問題;會運用勾股定理的逆定理判定直角三角形。因此,學生對這一內容的熟練掌握是至關重要的。

      2、學生已有的知識基礎和學習新知的障

      本章新授內容共14課時,其中勾股定理及其應用占4課時,學生對基礎知識基本掌握,但可能時間隔的比較長會有所遺忘,不能構建知識體系;另外本章的應用問題非常多,也非常重要,而學生利用數(shù)學知識解決實際問題的能力是較低的,往往看不懂題目的意思或不能很好的理解題意。因此如何通過本節(jié)課幫助學生進一步鞏固基礎知識,構建知識體系;提高學生分析解決實際問題的能力是本節(jié)課所要面臨的兩大問題。學生解答問題的條理性,書寫的規(guī)范性也是一個問題。

      二、目標的設定

      1、目標的設定 根據本課在教材及新課標中的地位和作用,結合學生現(xiàn)有的知識基礎將本節(jié)課的教學目標設定如下:

      (1)知識與技能:掌握勾股定理和勾股定理的逆定理以及簡單應用;(2)過程與方法:通過對本節(jié)內容的復習,培養(yǎng)學生綜合運用知識分析問題和解決問題的能力;感悟數(shù)形結合的數(shù)學思想。

      (3)情感、態(tài)度與價值觀:通過簡單的基礎題的訓練,提高學生學數(shù)學的信心和熱情;通過師生間的互動調動學生學習的積極性,讓學生體會成功的快樂。

      2、重、難點的確立及依據

      基于本節(jié)課所復習的內容的重要地位,將本節(jié)課的重點設定為:運用勾股定理和勾股定理的逆定理解決相關問題。由于學生利用數(shù)學知識解決實際問題的能力是較低的,往往看不懂題目的意思或不能很好的理解題意,故將本節(jié)課難點設定為:綜合運用知識分析問題和解決問題

      三、教法選擇:

      1、教學結構及教學基本思路

      用導學案的形式組織教學,通過學生課前對幾道基礎題的訓練,使學生對勾股定理和勾股定理的逆定理及其簡單應用有一定的認識;然后再通過對四個例題的分析和總結,使學生體會和解決問題的一般方法和思路;最后在時間允許的情況下,完成部分達標測試題加以鞏固和提高。基本思路:①學生分析基礎訓練題,教師點評和歸納;

      ②黑板顯示典型例題,師生合作共同分析,學生板演解題過程,教師評講,并及時總結解題思路和方法;

      ③學生總結本節(jié)課所復習的內容以及有何收獲; ④學生完成部分達標測試題,教師評講并及時進行補標。

      2、重難點的突破方法: 運用勾股定理和勾股定理的逆定理解決相關問題是本節(jié)課的重點,因此,課前完成的訓練題復習勾股定理和勾股定理的逆定理及其簡單應用,通過四個例題的分析和解決突出重點,并突破難點。由于學生的分析問題和解決問題的能力欠缺,所以通過師生合作共同分析解決問題的策略,并及時總結解題方法,進一步突破難點。通過達標測試來消化重點和難點。

      3、導入和過渡的設計

      由學生的課前對幾道基礎題的訓練來復習勾股定理及其逆定理導入本課,使學生體會到本節(jié)課所復習的主要內容,過渡到典型例題的講解師生合作共同分析解題的方法和技巧,并及時總結。最后通過達標測試進一步鞏固所學的知識。各個環(huán)節(jié)環(huán)環(huán)相扣,有機的形成一個整體。

      4、教輔手段的使用

      本節(jié)課用導學案的形式組織教學,先做后導,提高教學效果,增大課堂容量。用小黑板展示例題,有利于學生集中精力進行觀察分析問題。

      5、尊重學生個體差異,因材施教

      由于學生間存在較大的差異,因此課堂教學中注重激發(fā)學生的學習興趣和參與熱情,鼓勵學生大膽發(fā)言,尊重學生的差異,讓每個學生都有所發(fā)展,增強他們學習的興趣。

      四、學法指導

      勾股定理學生已經學過,因此通過課前訓練讓學生自己回憶出勾股定理和勾股定理的逆定理,使學生自己進入復習的角色。學生可能遇到的障礙是如何構建直角三角形然后利用勾股定理解決,先由學生討論并請個別學生進行分析,教師作適當?shù)难a充和說明,突破學生的障礙。

      五、作業(yè)設計

      一組基礎題的訓練幫助學生回憶和復習知識點;達標測試中的大部分題目是鞏固所復習的知識,個別題用來提高學生綜合運用知識解決問題的能力。

      第五篇:勾股定理說課稿

      探索勾股定理第一課時說課稿

      一、教材分析

      (一)教材地位與作用

      這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

      (二)教學目標

      知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想.情感態(tài)度與價值觀: 激發(fā)愛國熱情,體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學.(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

      突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.二、教法與學法分析:

      學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

      教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

      學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.三、教學過程設計

      1.創(chuàng)設情境,提出問題 2.實驗操作,模型構建 3.回歸生活,應用新知 4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)(一)創(chuàng)設情境提出問題

      (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 2002年國際數(shù)學的一枚紀念郵票 大會會標

      設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值.(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火? 設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié).二、實驗操作模型構建 1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補)問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系? 設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想.問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.通過以上實驗歸納總結勾股定理.設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律.三.回歸生活應用新知

      讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心.四、知識拓展鞏固深化 基礎題,情境題,探索題.設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展.知識的運用得到升華.基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

      設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維.

      情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎? 設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

      探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

      設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么? 作業(yè):

      1、課本習題2.1

      2、搜集有關勾股定理證明的資料.板書設計 探索勾股定理 如果直角三角形兩直角邊分別為a,b,斜邊為c,那么 a2+b2=c2?

      設計說明::1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.

      2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平.

      下載勾股定理5篇范文word格式文檔
      下載勾股定理5篇范文.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內容由互聯(lián)網用戶自發(fā)貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯(lián)系你,一經查實,本站將立刻刪除涉嫌侵權內容。

      相關范文推薦

        課題.勾股定理

        課題:14.1 勾股定理(第1課時) 教材:華東師大版 教師:衡陽市第十六中學 曹冬梅電話*** 一教學目標: ㈠知識目標: ⑴掌握勾股定理所揭示的本質,理解直角三角形三邊之間的數(shù)量......

        勾股定理說課稿,勾股定理說課稿[范文模版]

        勾股定理說課稿,勾股定理說課稿范文作為一名辛苦耕耘的教育工作者,總歸要編寫說課稿,借助說課稿可以提高教學質量,取得良好的教學效果。我們該怎么去寫說課稿呢?以下是小編整理......

        勾股定理(推薦閱讀)

        勾股定理又叫商高定理、畢氏定理,或稱畢達哥拉斯定理. 在一個直角三角形中,斜邊邊長的平方等于兩條直角邊邊長平方之和。如果直角三角形 +b2=c2兩直角邊分別為a、b,斜邊為c,那......

        如何證明勾股定理

        如何證明勾股定理勾股定理是初等幾何中的一個基本定理。這個定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往今來......

        《勾股定理》說課稿

        《勾股定理》說課稿 《勾股定理》說課稿1 一、教材分析(一)教材地位:這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何......

        勾股定理 專題證明

        勾股定理 專題證明1.我們給出如下定義:若一個四邊形中存在一組相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊。(1)......

        勾股定理證明

        勾股定理證明 直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理中國是發(fā)現(xiàn)和研究勾股定理最古老的國家之一。中......

        勾股定理說課稿

        勾股定理說課稿 勾股定理說課稿1 一、教材分析教材所處的地位與作用“探索勾股定理”是人教版八年級《數(shù)學》下冊內容?!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形......