第一篇:連鑄的發(fā)展
連鑄的發(fā)展
二戰(zhàn)之后,連鑄發(fā)展非常迅速,今天鋼鐵生產(chǎn)者普遍相信連鑄至少和模鑄一樣在經(jīng)濟上是合理的,并且能與大部分高質(zhì)量鋼的生產(chǎn)系列相匹配。這項技術(shù)不斷開發(fā)的目的在于改善鋼的性能,這促使生產(chǎn)特殊高級鋼時企業(yè)對其生產(chǎn)工藝過程不斷進行調(diào)整。使用連鑄系統(tǒng)的理由有:
(l)和初軋機組(小型車間)相比,降低投資費用;
(2)和傳統(tǒng)的鑄錠相比,提高10%的生產(chǎn)能力;
(3)在整個鑄坯長度上鋼的成分較均勻;中心質(zhì)量比較好,尤其是板坯;高的內(nèi)表面質(zhì)量,比其他需要昂貴的清理表而的工序節(jié)??;
(4)高度的自動化;
(5)益于保護環(huán)境;
(6)較好的工作條件設(shè)備類型
首臺連鑄機是立式連鑄機,可是,由于橫斷面的增大,注流長度的增加,而且主要是隨著澆注速度的增加,這種設(shè)備迫使廠房建筑高度增加。這些因素也導(dǎo)致了具有冶金影響的液相長度的大大增加。連鑄坯的液相長度由下式?jīng)Q定:
L=D2/4x2Vc 這里,D=鑄壞厚度(mm)x=凝固特征系數(shù)(mm/min1/2)
對于全部的冷卻長度這些值達到26-33。Vc=拉坯速度(m/分)
為了減少廠房高度,首先研制出將鋼水倒人立式結(jié)晶器中,并且在彎曲之前讓鋼水完全凝固的連鑄系統(tǒng),或彎曲時鑄坯仍處在液相,這種系統(tǒng)隨后發(fā)展為弧形結(jié)晶器,這是目前最常用的方法。立式連鑄機和那些鑄坯在完全凝固時被彎曲的連鑄機都有一個長直的液相,這大大增加了成本。
然而從維修的角度看,這些系統(tǒng)有冶金學(xué)優(yōu)點。鑄坯內(nèi)部仍為液相就進行彎曲的連鑄機比完全凝固后再彎曲的立式連鑄機更好,它不需要修建與立式連鑄機一樣高的廠房。然而,液相彎曲系統(tǒng)要求更高的初期投資和更大的維護費用。弧形連鑄機是考慮了投資費用和維護費用的折衷產(chǎn)物,而且可以在冶金上實現(xiàn)。
連鑄適合于生產(chǎn)任何橫斷而的產(chǎn)品:正方形的、長方形的、多邊形的、圓形的、橢圓形斷面都可以。也有些基本斷面的例子,如管坯、板坯、大型坯、方坯。斷面寬厚比大于1.6的鑄壞通常稱為板坯。方坯鑄機生產(chǎn)正方形或近于方形、圓形或多邊形斷面,斷面尺寸
1,200mm,但通常在700度(變化拉速)來補償任何鋼液面的變化。
連鑄中使用的引錠桿類型取決于連鑄機的類型。立式連鑄機可以使用剛性引錠桿,而組合式的或靈活式的引錠桿必須用于弧形連鑄機。引錠桿與鑄坯可以采用不同方式連接,一種是用連接部件(平板、螺釘、碎條鋼)將鋼液與引錠桿焊接在一起;另一種是在引錠桿頭部鑄造一個特殊連接頭,它能使引錠桿像打開扣環(huán)那樣進行脫錠。
鑄坯離開結(jié)晶器時的坯殼厚度首先取決于鋼液與結(jié)品器的接觸長度,它也依賴于結(jié)晶器的具體導(dǎo)熱系數(shù)和鋼水進人結(jié)晶器時的過熱度。它可以由下面的拋物線公式進行精確計算:
C=xt
式中:C-坯殼厚度(mm)x—凝固特性(mm/min1/2)t-凝固時間(min)
鑄坯在結(jié)晶器內(nèi)或附近的凝固特性是20到26,它取決于操作條件;二冷區(qū)是29到33.離開結(jié)晶器時鑄坯坯殼厚度約為鑄坯厚度的8-10%,它取決于拉坯速度。結(jié)晶器下面的二冷區(qū)加速了鑄坯的凝固過程。通常使用水進行冷卻,但有時也用水和空氣的混合物或壓縮空氣。為了適應(yīng)冷卻劑的流速,二冷區(qū)被分成很多部分。通過噴嘴將需要的水量噴到整個鑄壞上。與鑄坯斷面和拉速有關(guān)的鋼水靜壓力可能會太高,以至于鑄壞不得不被支撐以防止鼓肚。在生產(chǎn)大型坯尤其是板坯的工廠,這種裝置是很昂貴的。
工藝控制
由于生產(chǎn)率和質(zhì)量的原因,在現(xiàn)代鋼鐵生產(chǎn)中,有一種轉(zhuǎn)移費時操作的趨勢,例如,將溫度調(diào)整、脫氧和合金從熔化爐轉(zhuǎn)到鋼包處理站進行。這些操作在連鑄過程中尤為重要,因為在這個過程中要嚴格控制溫度和成分。
連鑄過程中進入結(jié)晶器的鋼水溫度控制要比常規(guī)鑄造中的溫度控制更精確。太高的過熱度能導(dǎo)致拉漏或一種柱狀結(jié)構(gòu),帶來較差的內(nèi)部質(zhì)量。另一方面太低的溫度會導(dǎo)致水口堵塞造成澆鑄困難和產(chǎn)生不潔凈鋼。板坯連鑄中間包溫度通常在液相線以上5到20度,而方坯或大型坯則為5到50℃。這種不同取決于鋼的等級,例如,小熔化爐中不銹鋼板坯連鑄過熱度為45℃。
在整個澆鑄過程中,為使鋼水溫度保持在上面所說的范圍之內(nèi),在鋼包中溫度的均勻性是最重要的。在澆鑄以前為了保持鋼包內(nèi)鋼液溫度的均勻,需要攪拌,有時也進行清洗氮氣或氬氣可以帶走熱量,它們由鋼包底部的多孔塞噴入或在獨立的清洗站通過一個中空的塞棒噴入。
在真空或清洗處理期間可以進行化學(xué)成份控制。在鋼液均勻后,進行取樣分析或用電
4質(zhì)量 冶金質(zhì)量的提高包括在化學(xué)成分和凝固特征上變化小。除了在鑄坯橫切面上,改善碳、硫和合金元素偏析特性以外,沿著鑄坯長度方向也沒有什么變化(當將一爐鋼水進行模鑄時,每一支鋼錠都有垂直偏析和組織變化,而連鑄坯不僅是一塊鋼錠而且垂直方向上沒有什么變化)。在現(xiàn)代連鑄過程中,鑄坯表面的質(zhì)量要高于軋制半成品質(zhì)量,軋制半成品的表面有例如結(jié)疤和疤痕等表面缺陷,因此,對鑄錠的精整和產(chǎn)量的損失均降到最低程度。大多數(shù)連鑄鋼坯均無需經(jīng)過任何修整就可進一步加工。因此能得到有較少的內(nèi)部和表面缺陷、性能得到改善、更均勻的最終產(chǎn)品。
能量 連鑄能夠節(jié)約能量,因為連鑄過程減少了在模鑄過程中的能量消耗。這些包括在均熱爐中的燃料消耗和初軋機的電能消耗。能量也可以通過產(chǎn)量增加來間接節(jié)省,因為它能減少用于生產(chǎn)大量半成品的原料鋼的消耗。除此之外,人們正在關(guān)注將熱的連鑄坯直接熱送到精軋機加熱爐的實踐,因此連鑄壞的顯熱被節(jié)約了。
污染 連鑄過程通過省略模鑄工藝設(shè)備如均熱爐減少了污染。
成本 連鑄的資金和運行成本與模鑄工藝相比均減少了。資金節(jié)約歸功于省掉了模鑄工藝所需要的設(shè)備。運行成本節(jié)約主要是較少的勞動力投人和較高的產(chǎn)量。
煉鋼
連鑄的煉鋼操作與用電爐或堿性氧氣轉(zhuǎn)爐生產(chǎn)鋼錠的煉鋼操作相似,僅有某些不同,主要有兩個:
(1)溫度控制;
(2)脫氧實踐。
出鋼溫度通常更高,以補償因運送到鑄機的時間增加引起的熱量損失,出鋼溫度要維持在一個較小的范圍內(nèi),以避免溫度太高時拉漏和溫度太低時中間包水口過早凝固。澆鑄溫度也能影響鑄坯的晶體結(jié)構(gòu)。在整個澆注過程中采用均一且低的過熱度可獲得鑄坯最佳晶體結(jié)構(gòu)。為了達到此目的,必須進行使鋼液溫度均勻的操作。廣泛使用的一種方法是利用鋼包底部的多孔塞吹入少量氬氣或?qū)姌尣迦虽摪好嫦麓禋鍞嚢桎撘骸?/p>
脫氧 連鑄鋼必須完全脫氧(鎮(zhèn)靜)以防止在鑄坯表面或接近表面的皮下形成氣泡或氣孔,氣泡和氣孔會導(dǎo)致隨后軋制過程中產(chǎn)生裂紋。根據(jù)鋼的等級和用途,采用如下兩種方法脫氧:
(1)對于粗晶粒鋼加人少量鋁,用硅進行脫氧;
(2)對于細晶粒鋼進行鋁脫氧。硅鎮(zhèn)靜鋼比鋁鎮(zhèn)靜鋼更容易澆鑄,因為避免了氧化鋁沉淀帶來的中間包水口堵塞問題。為了生產(chǎn)高質(zhì)量的產(chǎn)品,在連鑄之前,進行鋼包精煉正成為一種很普遍的操作。
第二篇:連鑄技術(shù)的發(fā)展
內(nèi)蒙古科技大學(xué) 本科生課程論文
題 目:連鑄技術(shù)的發(fā)展 學(xué)生姓名: 學(xué) 號: 專 業(yè):09成型 班 級: 指導(dǎo)教師:邢淑清
連鑄技術(shù)的發(fā)展
摘要:介紹了連鑄的歷史、發(fā)展、及其優(yōu)點,主要闡述了連鑄生產(chǎn)的相關(guān)技術(shù)及設(shè)備的應(yīng)用;同時詳細的介紹了高效連鑄生產(chǎn)技術(shù)和最新連鑄技術(shù)的發(fā)展。對連鑄技術(shù)的發(fā)展進行了展望。
關(guān)鍵詞:連鑄技術(shù);連鑄設(shè)備;高效連鑄技術(shù);發(fā)展現(xiàn)狀
Development of Continuous Casting
Technology Abstract:The history, development, continuous of casting and its advantages is introduced in this paper.Mainly elaborated the continuous casting production technology and equipment application.Which detailed introduction of the high efficient continuous casting technology and the latest development of continuous casting technology.And On the development of continuous casting technology is discussed.Key words: Continuous casting technology;Continuous casting equipment;High efficient continuous casting technology.引言
1858年,在鋼鐵協(xié)會倫敦會議上,首次提出“無錠澆鑄”的概念。然而,直到20世紀40年代,該工藝才開始商業(yè)應(yīng)用。因為鋼的熔點和熱傳導(dǎo)性高,在此期間,研究者遇到了很多問題。首臺投用的連鑄機是立式的,裝有一個帶彈簧裝置的結(jié)晶器。生產(chǎn)率低,常因金屬粘結(jié)結(jié)晶器而發(fā)生漏鋼。結(jié)晶器振動的概念由德國一非鐵金屬連鑄的先驅(qū)提出,于1952年用于德國某鋼廠的直結(jié)晶器立式連鑄機上, 這是連鑄工業(yè)化規(guī)模的開始。
由于技術(shù)限制,多年內(nèi)連鑄技術(shù)只限于小鋼廠,自1970年開始,連鑄開始用于鋼鐵聯(lián)合企業(yè)生產(chǎn)板坯。對凝固現(xiàn)象的科學(xué)合理的透徹理解,導(dǎo)致連鑄快速增長。連鑄技術(shù)
1.1連鑄技術(shù)簡介
連鑄是把液態(tài)鋼用連鑄機澆注、冷凝、切割而直接得到鑄坯的工藝。它是連
接煉鋼和軋鋼的中間環(huán)節(jié),是煉鋼生產(chǎn)廠(或車間)的重要組成部分。一臺連鑄機主要是由盛鋼桶、中間包、中間包車、結(jié)晶器、結(jié)晶器振動裝置、二次冷卻裝置、拉坯矯直裝置、切割裝置和鑄坯運出裝置等部分組成的。連鑄技術(shù)的應(yīng)用徹底改變了煉鋼車間的生產(chǎn)流程和物流控制,為車間生產(chǎn)的連續(xù)化、自動化和信息技術(shù)的應(yīng)用以及大幅度改善環(huán)境和提高產(chǎn)品質(zhì)量提供了條件。此外,連鑄技術(shù)的發(fā)展,還會帶動冶金系統(tǒng)其他行業(yè)的發(fā)展,對企業(yè)組織結(jié)構(gòu)和產(chǎn)品結(jié)構(gòu)的簡化與優(yōu)化有著重要的促進作用。1.2連鑄工藝的優(yōu)點
鋼液的兩種成形工藝:模鑄法和連鑄法比較如圖1所示
圖1 模鑄與連鑄工藝流程的對比圖
可以看出二者的根本差別在于模鑄是在間斷情況下,把一爐鋼水澆鑄成多根鋼錠,脫模之后經(jīng)初軋機開坯得到鋼坯;而連鑄過程是在連續(xù)狀態(tài)下,鋼液釋放顯熱和潛熱,并逐漸凝固成一定形狀鑄坯的工藝過程[1]。鋼在這種由液態(tài)向固態(tài)的轉(zhuǎn)變過程中,體系內(nèi)存在動量、熱量和質(zhì)量的傳輸,相變、外力和應(yīng)力引起的變形,這些過程均十分復(fù)雜,往往耦合進行或相互影響[2]。與模鑄—初軋開坯工藝相比,連鑄工藝具有如下優(yōu)點[3]:
(1)簡化了鑄坯生產(chǎn)的工藝流程,省去了模鑄工藝的脫模、整模、鋼錠均熱和開坯工序。流程基建投資可節(jié)省40%,占地面積可減少30%,操作費用可節(jié)省40%,耐火材料的消耗可減少15%。
(2)提高了金屬收得率,集中表現(xiàn)在兩方面一是大幅度減少了鋼坯的切頭切尾損失;二是可生產(chǎn)出的鑄坯最接近最終產(chǎn)品形狀,省去了模鑄工藝的加熱開坯 3
工序,減少金屬損失??傮w講,連鑄造工藝相對模鑄工藝可提高金屬收得率約9%。
(3)降低了生產(chǎn)過程能耗,采用連鑄工藝,可省去鋼錠開坯均熱爐的燃動力消耗。可節(jié)省能耗1/4~1/2。
(4)提高了生產(chǎn)過程的機械化、自動化水平,節(jié)省了勞動力,為提高勞動生產(chǎn)率創(chuàng)造了有利條件,并可進行企業(yè)的現(xiàn)代化管理升級。1.3我國連鑄技術(shù)的發(fā)展狀況
中國是世界上研究和應(yīng)用連鑄技術(shù)較早的國家,從20世紀50年代起就開始連鑄技術(shù)的研究,60年代初進入到連鑄技術(shù)工業(yè)應(yīng)用階段。但是,從60年代末到70年代末,連鑄技術(shù)幾乎停滯不前。1982年統(tǒng)計數(shù)字表明,世界平均連鑄比為30%左右,而中國的連鑄比僅為6.2%。80年代后,中國連鑄技術(shù)進入新的發(fā)展時期,從國外引進了一批先進水平的小方坯、板坯和水平連鑄機。80年代中期,中國擁有了第一個全連鑄鋼廠-武鋼第二煉鋼廠。近年來,中國連鑄技術(shù)飛速發(fā)展。到2005年,中國除海南、寧夏、西藏外,其他各省(市、自治區(qū))都有了連鑄,連鑄比已經(jīng)達到了97.5%,目前,中國的鋼鐵冶金工藝水平達到了世界中上等水平[4]。
2連鑄生產(chǎn)及關(guān)鍵技術(shù)
2.1連鑄設(shè)備
連鑄機的發(fā)展大致經(jīng)歷了立式→立彎式→弧形→超低頭形→水平等幾個階段。每種機型都各有其特點,有它最適應(yīng)的范圍,還沒有一種機型可完全取代其他機型。目前, 連鑄機除滿足產(chǎn)量要求外,從生產(chǎn)率、鑄坯品種質(zhì)量、鑄坯斷面、降低連鑄機高度、節(jié)省基建和設(shè)備投資等方面綜合分析,弧形連鑄機是被應(yīng)用的主要機型[3]。但板坯連鑄機的總趨向是用直弧型替代弧型,以消除或減輕鑄坯內(nèi)弧側(cè)夾雜物的積聚問題。
連鑄生產(chǎn)所用設(shè)備通常可分為主體設(shè)備和輔助設(shè)備兩大部分。主體設(shè)備主要包括:(1)澆鑄設(shè)備-鋼包運輸設(shè)備、中間包及中間包小車或旋轉(zhuǎn)臺;(2)結(jié)晶器及其振動裝置;(3)二次冷卻裝置-小方坯連鑄機、大方坯連鑄機和板坯連鑄機有很大差別);(4)拉坯矯直機設(shè)備-拉坯機、矯直機、引錠鏈、脫錠與引錠子鏈存放裝置;(5)切割設(shè)備-火焰切割機與機械剪切機等。
輔助設(shè)備主要包括:(1)出坯及精整設(shè)備-輥道、推(拉)鋼機、翻鋼機、火焰
清理機等;(2)工藝設(shè)備-中間包烘烤裝置、吹氬裝置、脫氣裝置、保護渣供給與結(jié)晶器潤滑裝置等;(3)自動控制與測量儀表-結(jié)晶器液面測量與顯示系統(tǒng)、過程控制計算機、測溫、測重、測長、測速、測壓等儀表系統(tǒng)[3]。2.2連鑄關(guān)鍵技術(shù)
(1)鋼包回轉(zhuǎn)臺的關(guān)鍵技術(shù)有:鋼包加蓋,單包升降系統(tǒng),鋼包稱量系統(tǒng),防氧化保護澆注系統(tǒng),鋼包下渣檢測系統(tǒng),鋼包傾斜機構(gòu),長水口自動安裝系統(tǒng),鋼水質(zhì)量控制系統(tǒng),鋼水溫度控制檢測系統(tǒng),鋼包吹氬攪拌系統(tǒng),回轉(zhuǎn)驅(qū)動采用液壓馬達的新型驅(qū)動系統(tǒng)。
(2)中間包及其烘烤裝置的關(guān)鍵技術(shù)有:中間包大型化(已達40~80t),中間包結(jié)構(gòu)形狀的優(yōu)化、擋渣墻的設(shè)置和新型耐火材料的利用,鋼水自動稱量反饋系統(tǒng),中間包冶金技術(shù),采用陶瓷泡沫過濾器過濾各類夾雜物,熱中間包循環(huán)使用工藝和設(shè)備,浸入式水口快速更換裝置,滑動水口與浸入式水口組合使用及氬氣密封,自動開澆工藝與系統(tǒng),烘烤裝置自動點火器,浸入式水口內(nèi)部烘烤技術(shù)。
(3)中間包車關(guān)鍵技術(shù)有:結(jié)晶器液面檢測器安裝機構(gòu),復(fù)雜緊湊的機械結(jié)構(gòu)、電纜及管線走向設(shè)計,長水口自動安裝機械手(被設(shè)計在中間包車上),中間包傾斜澆注技術(shù)(提高金屬收得率)。
(4)結(jié)晶器關(guān)鍵技術(shù)有:結(jié)晶器倒錐度,在線熱狀態(tài)調(diào)寬調(diào)錐度系統(tǒng),結(jié)晶器在線停機調(diào)厚,高速澆鑄時銅板冷卻水高流速均勻傳熱冷卻結(jié)構(gòu),渦流式、電磁式、同位素式、浮子式、激光式、超聲波式等各種有效的液面檢控系統(tǒng),漏鋼預(yù)報及熱成像系統(tǒng),結(jié)晶器銅板熱面溫度控制系統(tǒng)及最低進水溫度控制,結(jié)晶器電磁攪拌和電磁制動,一個結(jié)晶器澆多流鑄坯的插裝式結(jié)構(gòu),結(jié)晶器銅板母材采用合金銅并鍍鎳鉻、鎳鐵合金或鎳鈷合金(提高其高溫抗變形的能力和耐磨性能), 澆鑄寬板坯采用分段式結(jié)晶器足輥或高拉速時采用格柵支承結(jié)構(gòu),浸入式水口隨板坯寬度和拉速變化而變化的最佳工藝特性,保護渣自動供給裝置,保護渣的理化性能檢測設(shè)施。
(5)結(jié)晶器振動裝置關(guān)鍵技術(shù)有:液壓伺服振動機構(gòu)(能在澆鑄過程中改變振幅、頻率和波形偏斜率),緩沖力的優(yōu)化,高頻率小振幅工藝的優(yōu)化,振動體質(zhì)量的最小化及板簧導(dǎo)向系統(tǒng),外裝式結(jié)晶器電磁鋼流控制裝置的支撐與運轉(zhuǎn)機構(gòu),內(nèi)裝式結(jié)晶器電磁鋼流控制裝置的支撐機構(gòu),結(jié)晶器運動狀況動態(tài)監(jiān)視系統(tǒng)(主要 5
監(jiān)視摩擦力的變化),結(jié)晶器振動反向控制模型(拉速提高,頻率降低,振幅提高)。
(6)零號扇形段的關(guān)鍵技術(shù)有:調(diào)寬調(diào)厚裝置及工藝設(shè)備參數(shù),設(shè)備冷卻、有效潤滑及防漏鋼設(shè)施,牢靠的定位與對弧調(diào)整功能。
(7)積極采用連鑄新工藝、新成果。引進薄板坯連鑄技術(shù)、單晶連鑄技術(shù)、連鑄坯高溫熱送熱裝及直接軋制、水平連鑄技術(shù)、鑄坯的輕壓下技術(shù)以及中間包冶金等技術(shù),將對我國連鑄甚至整個鋼鐵工業(yè)的發(fā)展起到重要的促進作用。
3高效連鑄生產(chǎn)
3.1高效連鑄作用
3.1.1連鑄坯產(chǎn)量大幅度提高
從1989年到2001年我國連鑄坯產(chǎn)量由1004萬t增加到12 000萬t以上,連鑄比由16.3%提高到87.5%。如果只靠投資新建鑄機,而沒有連鑄機的高效化,新建和原有鑄機都是那樣的低生產(chǎn)率,要想達到這樣的總產(chǎn)量是不可想象的,無論資金投入、場地占用等許多方面都是難以承受的。高效連鑄技術(shù)為鋼鐵行業(yè)的調(diào)整結(jié)構(gòu)降低成本作出了貢獻。3.1.2實現(xiàn)煉鋼車間的爐機匹配
我國的轉(zhuǎn)爐車間爐容從幾噸到200t都有小方坯生產(chǎn)。由于小方坯鑄機生產(chǎn)能力低,3臺轉(zhuǎn)爐配4、5臺甚至6臺連鑄機,匹配關(guān)系復(fù)雜混亂,工藝制度不能保證。這反過來又影響了鑄機生產(chǎn)和鑄坯質(zhì)量。3.1.3經(jīng)濟效益
實現(xiàn)高效連鑄使各項技術(shù)指標提高,消耗下降,鑄坯質(zhì)量改善,可使企業(yè)降低成本節(jié)省投資,獲得很大的經(jīng)濟效益。3.2提高連鑄機生產(chǎn)率的途徑
提高連鑄機產(chǎn)量,主要是從提高連鑄機拉速和提高連鑄機作業(yè)率兩方面著手。
3.2.1提高連鑄機拉速
連鑄機拉速的提高受出結(jié)晶器坯殼厚度、液相穴長度(冶金長度)、二次冷卻強度等因素的限制。要針對連鑄機的不同情況,對連鑄機進行高效化改造。
小方坯連鑄機高效化改造的核心就是提高拉速。拉速提高后,為了保證出結(jié)晶器坯殼不漏鋼,其核心技術(shù)就是優(yōu)化結(jié)晶器錐度,開發(fā)新型結(jié)晶器,包括:Concast的凸模結(jié)晶器(CONVEX MOLD);Danieli自適應(yīng)結(jié)晶器(DANAM);VAI的鉆石結(jié)晶器(DIAMOLD);Paul Wurth的多錐度結(jié)晶器。雖然結(jié)晶器名稱不相同,但其實質(zhì)就是使結(jié)晶器錐度與坯殼收縮相一致,不致于產(chǎn)生氣隙而減慢傳熱,影響坯殼均勻性生長。
目前,國際上小方坯鑄機拉速達到的水平見圖1和表1。
圖1 方坯尺寸與拉速關(guān)系
表1小方坯鑄機拉速
名 稱 德馬克 康卡斯特 丹尼立 VAI
斷面/mm×
mm 130×130 150×150 130×130 115×115 155×155
拉速/m.min 4.0-4.3 3.5 4.3 5.1 2.9
結(jié)晶器型式 拋物線 凸型 自適應(yīng) 鉆石 鉆石
小方坯鑄機拉速的提高,表現(xiàn)為單流產(chǎn)量的提高。從世界連鑄發(fā)展的歷程來看,20世紀70、80、90年代連鑄機的單流年產(chǎn)量分別為5~6、8~10、15~16萬t。
我國鋼材生產(chǎn)結(jié)構(gòu)是長型材較多,板材比較低(約40%),反映在連鑄機建設(shè)上是中小型鋼廠建設(shè)小方坯連鑄機較多。據(jù)統(tǒng)計,我國共建小方坯連鑄機280臺 7
978流,年產(chǎn)量近6000萬t,平均單流年產(chǎn)量約為6萬t。與國外比較,連鑄機生產(chǎn)率還較低。為提高連鑄機生產(chǎn)率,從20世紀90年代以來,我國對舊有小方坯連鑄機進行了高效化改造,如120mm×120mm方坯拉速由2.0m/min提高到3.0~4.0m/min,150mm×150mm方坯拉速由1.5m/min提高到2.5~3.0m/min。目前,我國不少鋼廠的小方坯連鑄機經(jīng)過高效化改造后,單流年產(chǎn)量已達到15~20萬t的國際水平。3.2.2提高連鑄機作業(yè)率
提高連鑄機作業(yè)率的技術(shù)有:
(1)長時間澆注多爐連澆技術(shù):異鋼種多爐連澆;快速更換長水口;在線調(diào)寬;結(jié)晶器在線快速調(diào)厚度(只需25~30min);在線更換結(jié)晶器(小方坯);中間包熱循環(huán)使用技術(shù);防止浸入式水口堵塞技術(shù)。
(2)長時間澆注連鑄機設(shè)備長壽命技術(shù):長壽命結(jié)晶器,每次鍍層的澆鋼量為20~30萬t;長壽命的扇形段,上部扇形段每次維修的澆鋼量100萬t,下部扇形段每次維修的澆鋼量300~400萬t。
(3)防漏鋼的穩(wěn)定化操作技術(shù):結(jié)晶器防漏鋼預(yù)報系統(tǒng);結(jié)晶器漏鋼報警系統(tǒng);結(jié)晶器熱狀態(tài)運行檢測系統(tǒng)。
(4)縮短非澆注時間維護操作技術(shù):上裝引錠桿;扇形段自動調(diào)寬和調(diào)厚技術(shù);鑄機設(shè)備的快速更換技術(shù);采用各種自動檢測裝置;連鑄機設(shè)備自動控制水平。
3.3提高連鑄坯質(zhì)量技術(shù) 3.3.1提高連鑄坯潔凈度技術(shù)
(1)連鑄坯潔凈度評價包括:鋼總氧量T[O];鋼中微觀夾雜物(<50μm);鋼中大顆粒夾雜物量(>50μm)。不同產(chǎn)品對鋼中潔凈度要求如表6所示。 [6][5] 8
(2)連鑄坯潔凈度是一個系統(tǒng)工程。就連鑄過程而言,要得到潔凈的連鑄坯,其任務(wù)是:爐外精煉獲得的“干凈”鋼水,在連鑄過程中不再污染;連鑄過程中應(yīng)創(chuàng)造條件在中間包和結(jié)晶器中使夾雜物進一步上浮去除。連鑄過程鋼水再污染,主要決定于鋼水二次氧化、鋼水與環(huán)境(空氣、渣、包襯)相互作用、鋼水流動的穩(wěn)定性、鋼渣乳化卷渣。
(3)連鑄過程控制鋼潔凈度對策:保護澆注;中間包冶金技術(shù),鋼水流動控制;中間包材質(zhì)堿性化(堿性復(fù)蓋劑,堿性包襯);中間包電磁離心分離技術(shù);中間包熱循環(huán)操作技術(shù);中間包的穩(wěn)定澆注技術(shù);防止下渣和卷渣技術(shù);結(jié)晶器流動控制技術(shù);結(jié)晶器EMBR技術(shù)。3.3.2提高鑄坯表面質(zhì)量的控制技術(shù)
鑄坯表面質(zhì)量好壞是熱送熱裝和直接軋制的前提條件。鑄坯表面缺陷的產(chǎn)生主要決定于鋼水在結(jié)晶器的凝固過程。要清除鑄坯表面缺陷,應(yīng)采用以下技術(shù):結(jié)晶器鋼液面穩(wěn)定性控制;結(jié)晶器振動技術(shù);結(jié)晶器內(nèi)凝固坯殼生長均勻性控制技術(shù);結(jié)晶器鋼液流動狀況合理控制技術(shù);結(jié)晶器保護渣技術(shù)。3.3.3提高連鑄坯內(nèi)部質(zhì)量的控制技術(shù)
連鑄坯內(nèi)部缺陷一般情況在軋制時能焊合消除,但嚴重時會使中厚板力學(xué)性能惡化,使管線鋼氫脆和高碳硬線脆斷。鑄坯內(nèi)部缺陷的產(chǎn)生主要決定帶液芯的鑄坯在二冷區(qū)的凝固過程。要消除鑄坯內(nèi)部缺陷,可采用以下技術(shù)措施:低溫澆注技術(shù);鑄坯均勻冷卻技術(shù);防止鑄坯鼓肚變形技術(shù);輕壓下技術(shù);電磁攪拌技術(shù);凝固末端強冷技術(shù);多點或連續(xù)矯直技術(shù);壓縮鑄造技術(shù)。
[7]4最新連鑄技術(shù)的發(fā)展
4.1近終形連鑄技術(shù)的發(fā)展
世界鋼鐵生產(chǎn)者開始尋求技術(shù)改進以擴展連鑄的優(yōu)勢。1989年,德國供應(yīng)商SMS首次在美國的一個小型鋼廠紐柯鋼廠安裝了一臺薄板坯連鑄機。新設(shè)計了漏斗形結(jié)晶器,其它與傳統(tǒng)連鑄機相似。導(dǎo)致世界范圍內(nèi)薄板坯連鑄機的商業(yè)化發(fā)
展,其厚度范圍在40~70mm 之間,典型拉速為5.5m/min。
薄板坯連鑄機的成功并沒有使鋼鐵工作者進一步尋求技術(shù)進步的腳步停止,其代表為R&D在貝西默的獨創(chuàng)帶鋼連鑄概念。1999年,鋼鐵巨頭Nucor/BHP/IHI及Thyssen Krupp steel/Usino r/ VAI開始商業(yè)化推廣他們的Cast rip工藝及Euro st rip 工藝,可以直接從鋼水生產(chǎn)出帶鋼(見圖2)。
圖2雙輥帶鋼鑄機
在普遍采用的雙輥帶鋼連鑄工藝中,鋼液倒入兩個柜式旋轉(zhuǎn)輥中。兩個陶瓷側(cè)板擠壓裝有鋼液的鑄輥的前面。鋼殼在兩個輥面間形成,熔融金屬喂入彎月面。坯殼生長至兩輥間的接觸點(最窄點), 在這里兩坯殼相接觸,當它們通過鑄輥時形成連續(xù)的鋼帶,從結(jié)晶器下面出鑄機。至形成2mm厚的凝固鋼帶僅需0.4s。典型的鑄速為40~130mm/min,依賴于帶鋼厚度、鑄輥尺寸和溶池高度。
鋼梁的首次近終形連鑄是鑄成“狗骨”形毛坯取代正方形或矩形截面,可生產(chǎn)的梁毛坯尺寸為(480~1050)mm×(355~450)mm×(120~165)mm,鑄速為0.45~2.5m/min,其軋制成本較低,生產(chǎn)率較高,能耗降低。4.2 結(jié)晶器幾何形狀的演變
結(jié)晶器是鑄機的心臟,結(jié)晶器設(shè)計相應(yīng)決定了鑄速和生產(chǎn)率。為提高鑄速和生產(chǎn)率,需要適當?shù)慕Y(jié)晶器幾何形狀,以提高熱傳輸和降低結(jié)晶器摩擦。4.2.1厚板坯連鑄機的直結(jié)晶器
從傳統(tǒng)的弧形結(jié)晶器到直結(jié)晶器的采用,保證在整個結(jié)晶器長度內(nèi)鑄流、坯
殼與結(jié)晶器銅板的均勻接觸。使坯殼快速均勻生長,降低拉漏危險。而且,非金屬夾雜容易上升到熔池,保證鑄坯的優(yōu)良內(nèi)部質(zhì)量。4.2.2小方坯的多段結(jié)晶器
多段結(jié)晶器對高速小方坯連鑄降低漏鋼率較為有效,它由一個主筒結(jié)晶器和與之相連的約320mm長的剛性第二段組成。第二段由4塊固定在底板上的水冷銅板組成,通過一個支架和基板套在主結(jié)晶器的外面。連鑄過程中,冷卻板通過彈簧作用輕壓鑄坯,冷卻板噴冷卻水加快熱傳輸,冷卻水直接垂直噴射到小方坯蓋板上。這種工藝中,鑄速可達4~4.3m/min,高于傳統(tǒng)有足輥結(jié)晶器連鑄機的3.5m/min,而且,漏鋼率也較傳統(tǒng)鑄機降低0.50%~1.0%。4.2.3錐度結(jié)晶器
錐度結(jié)晶器可用于大方坯/小方坯和板坯連鑄機,拋物線結(jié)晶器的引入成為連鑄歷史的轉(zhuǎn)折點。結(jié)晶器錐度依賴于鋼種和鑄速,結(jié)晶器設(shè)計上考慮鑄坯在結(jié)晶器內(nèi)的鑄坯收縮,以使結(jié)晶器與鑄坯接觸,保證良好傳熱。在高速澆鑄下,鋼在結(jié)晶器內(nèi)的停留時間非常短,因此,坯殼必須有足夠的強度以承受液態(tài)鋼水的靜壓力,為此,結(jié)晶器筒在不同段設(shè)計成多種錐度,主要考慮鋼水收縮,保證鋼坯與結(jié)晶器的良好接觸。
另一個發(fā)展方向是在板坯連鑄機結(jié)晶器采用有導(dǎo)角的拋物線錐度,保證整個結(jié)晶器長度內(nèi)鑄坯與銅板直接接觸,促進坯殼快速均勻生長。導(dǎo)角減小了結(jié)晶器摩擦,因此可減少銅板磨損。其應(yīng)用可改善鑄態(tài)組織、減少鑄坯角部內(nèi)部質(zhì)量缺陷、降低側(cè)邊鼓肚。
4.2.4小方坯鑄機的結(jié)晶器長度
對高速小方坯,提高結(jié)晶器筒長100~200mm,使總長超過傳統(tǒng)的900mm,提高鋼在結(jié)晶器內(nèi)的停留時間,從而提高坯殼強度。4.3結(jié)晶器振動的改進 4.3.1液壓結(jié)晶器振動
理想的結(jié)晶器振動是充分利用結(jié)晶器優(yōu)化設(shè)計的前提。液壓結(jié)晶器振動采用二個液壓缸控制伺服閥,每個伺服閥預(yù)先設(shè)定設(shè)置點,將結(jié)晶器設(shè)置成周期性振動。對伺服閥儲存不同的設(shè)置點實現(xiàn)相應(yīng)的振動速度曲線,正弦函數(shù)是基本的振動型式。
不同速度曲線的振頻和振幅不同,在澆鑄過程中,鑄速函數(shù)能自動與預(yù)設(shè)定的函數(shù)序列相適應(yīng)。其優(yōu)點包括:振動曲線、振幅、振頻的在線控制,減少結(jié)晶器摩擦,減輕結(jié)晶器機械運動,減輕鑄件振痕,提高操作安全和減少維護等。4.3.2板坯連鑄機結(jié)晶器振動的三角模式
結(jié)晶器振動利于保護最初形成的坯殼,需要一個合理的結(jié)晶器正向和負向振動以降低坯殼的拉應(yīng)力,使結(jié)晶器潤滑渣充分滲入并沿模壁鋪展。在正弦振動中,主要問題是在每個振幅中,正滑脫時間較短,高頻振動器使結(jié)晶器摩擦增大。為此,開發(fā)了三角模式振動,通過調(diào)整振動速度,使向上運動的時間長于向下運動,這種較長的正滑脫時間減少了結(jié)晶器與凝固坯殼的相對運動,因為負滑脫時間較短,可減小摩擦,降低振痕深度。4.3.3結(jié)晶器寬度調(diào)整
在線液壓結(jié)晶器寬度調(diào)整利于生產(chǎn)不同尺寸板坯,減小下線時間。該系統(tǒng)可提高連鑄產(chǎn)品大綱的靈活性,提高生產(chǎn)率。4.3.4結(jié)晶器液面自動控制
當前結(jié)晶器液面控制通常采用塞棒調(diào)整中間包滑板開閉進行。結(jié)晶器液面探測可采用放射性同位素,系統(tǒng)擁有一個PID(比例微積分)控制器,可將液面實際控制信號與設(shè)定值相比較。控制器根據(jù)反饋結(jié)果輸出信號促使伺服驅(qū)動開閉塞棒激勵器。伺服驅(qū)動可控制塞棒位置, 控制精度通常為±2mm。在自動開澆模式,按存儲的時間曲線對結(jié)晶器進行設(shè)定,如果液面達到固定的設(shè)定值,自動從時間曲線控制切換到閉環(huán)控制。其主要優(yōu)點是優(yōu)良的表面/皮下質(zhì)量,較輕的振痕深度和低一倍的漏鋼率,因此提高了生產(chǎn)率。4.4電磁攪拌
連鑄坯組織為較外層柱狀晶區(qū)為中心等軸晶區(qū)所包圍, 柱狀晶的長度直接受過熱度影響,如圖3所示。
圖3過熱度對柱狀晶和等軸晶量的影響
為限制柱狀晶區(qū),中間包內(nèi)鋼水溫度應(yīng)接近液相線溫度,EMS(電磁攪拌)能限制柱晶結(jié)晶,促進細小規(guī)則等軸晶形成。攪拌器的工作原理包括磁場的產(chǎn)生,磁場穿透凝固殼,在鋼液中感應(yīng)出傅科勒特電流。這種感應(yīng)電流和磁感應(yīng)產(chǎn)生一個電磁力,使液態(tài)金屬產(chǎn)生運動。通過對流促進液固鋼之間的熱交換,消除殘余過熱,導(dǎo)致凝固前沿的熱梯度減小,柱狀晶生長條件不復(fù)存在。這些運動導(dǎo)致柱狀晶枝晶重熔和斷裂,形成更多的等軸晶。圖4示出了電磁攪拌和未攪拌時等軸晶比例對比。
圖4電磁攪拌對晶粒的細化作用
根據(jù)需要攪拌器可放于結(jié)晶器或結(jié)晶器之下。對大方坯/小方坯連鑄機,EMS可提高表面/皮下質(zhì)量,減少合金偏析、渣坑和針孔,其主要優(yōu)點是通過增大等軸晶區(qū)提高內(nèi)部質(zhì)量,減少枝晶搭橋,阻止中心氣孔和中心偏析。
為進一步降低偏析,可在二冷區(qū)下部安裝EMS,通過攪拌中心未凝固鋼液,均勻成分,減少中心線偏析發(fā)生。
攪拌器類型應(yīng)根據(jù)澆鑄產(chǎn)品的冶金要求和攪拌參數(shù)如強度、頻率、磁場方向等進行選擇,而且設(shè)計和位置應(yīng)慎重考慮。
電磁攪拌改變了彎月面形狀,減慢了彎月面鋼液凝固,導(dǎo)致彎月面附近液體流動。在板坯連鑄中,一種AC和DC雙重感應(yīng)磁場技術(shù)被用于進行彎月面控制,另有一種改進的電磁攪拌閘用于控制結(jié)晶器自然流動形式。4.5輕壓下
大方坯/板坯連鑄機輕壓下的目的是減少鑄坯的中心偏析。采用調(diào)整拉坯段的錐度,對出結(jié)晶器后的鑄坯采用外加機械壓力減輕中心疏松、偏析、化學(xué)成分不均勻性。通過阻止凝固搭橋,促進粘稠鋼液運動,補償熱收縮。輕壓下參數(shù)取決于鑄機布置、鑄速、鋼的化學(xué)成分、鋼水過熱度及鑄坯二次冷卻。改進的動態(tài)輥縫調(diào)整技術(shù)可適應(yīng)拉坯過程中澆鑄參數(shù)的變化。4.6連鑄自動化
二級自動化系統(tǒng)能改善質(zhì)量和提高生產(chǎn)率,連鑄工藝和質(zhì)量自動控制系統(tǒng)包括結(jié)晶器液面控制、鑄坯錐度控制、速度控制數(shù)學(xué)模型、噴水冷卻系統(tǒng)和長度切割優(yōu)化等[8]。5發(fā)展趨勢
5.1進一步發(fā)展高效連鑄技術(shù)(傳統(tǒng)連鑄技術(shù)的發(fā)展方向)[9]。
高效連鑄技術(shù)是指連鑄機實現(xiàn)高拉速、高作業(yè)率、高連澆爐數(shù)及低拉漏率生產(chǎn)高溫無表面缺陷連鑄坯的技術(shù)。實現(xiàn)連鑄高效化的前提是:及時為連鑄機供應(yīng)溫度和成分均合格的鋼水;完善自動檢測的手段和電子計算機的聯(lián)網(wǎng)控制;具有高質(zhì)量的連鑄用保護渣和耐火材料;操作人員具有熟練的操作技術(shù)等。實現(xiàn)連鑄高效化,其核心是提高連鑄機的拉速。而提高連鑄機拉速,需要解決結(jié)晶器和二冷段的冷卻效果、結(jié)晶器的液面控制及相關(guān)技術(shù)問題。
5.2推廣近終形連鑄技術(shù)。
主要包括薄板坯連鑄技術(shù)、薄帶連鑄技術(shù)、異型坯連鑄技術(shù)和噴霧成形等。與傳統(tǒng)工藝相比,它主要具有工藝簡單、生產(chǎn)周期短、能量消耗低、生產(chǎn)成本低、質(zhì)量較高等優(yōu)點。這些優(yōu)點恰好彌補了傳統(tǒng)工藝的不足。此外,利用薄帶連鑄技術(shù)的快速凝固效應(yīng)可以獲得一些難以生產(chǎn)的材料和新功能材料[10]。5.3液芯壓下技術(shù)
液芯壓下又稱軟壓下,是在鑄坯出結(jié)晶器下口后,對帶液芯的鑄坯的坯殼施加擠壓,使其減薄到目標厚度。根據(jù)液芯壓下的終點位置又分靜態(tài)壓下和動態(tài)壓下。液芯壓下的終點位置不變,在一個扇形段內(nèi)結(jié)束的稱靜態(tài)液芯壓下。動態(tài)液芯壓下是指根據(jù)鋼種、過熱度、澆注速度及冷卻模型計算液芯長度,依據(jù)液芯長度在合適的鑄坯長度上分配鑄坯壓下量,且使液芯壓下終點處于合適固相率的區(qū)域。動態(tài)液芯壓下可細化晶粒,減少中心偏析,明顯提高鑄坯的內(nèi)部質(zhì)量。由于靜態(tài)液芯壓下是在固定位置實施,而不是在鑄坯的凝固末端,普遍認為對鑄坯內(nèi)部質(zhì)量的提高不大。目前CSP、QSP采用的是靜態(tài)液芯壓下,FTSR采用的是動態(tài)液芯壓下技術(shù)[11,12]。
6結(jié)論
(1)我國連鑄比已超過世界平均水平,接近工業(yè)發(fā)達國家水平,連鑄比可以說接近飽和狀態(tài)。
(2)我國小方坯連鑄機高效化改造取得很大成績。小方坯連鑄機單流產(chǎn)量已達到國際先進水平。但我國連鑄機平均作業(yè)率與世界連鑄機平均水平還存在較大差距。提高連鑄機作業(yè)率以增加連鑄機產(chǎn)量還有較大發(fā)展?jié)摿Α?/p>
(3)經(jīng)過近10多年來的努力,我國連鑄在高效化改造、新技術(shù)的應(yīng)用等方面取得了很大成就,就大中型企業(yè)連鑄機裝備水平來看已與國外鋼廠水平相當。要重視工藝軟件技術(shù)開發(fā)與創(chuàng)新,新技術(shù)要用出實效來。要依靠傳統(tǒng)的板坯和大方坯連鑄機來生產(chǎn)和解決高品質(zhì)、高附加值的連鑄坯質(zhì)量問題。
參考文獻
[1]陳雷.連續(xù)鑄鋼[M].北京:冶金工業(yè)出版社,2004.8-10.
[2]干勇,仇圣桃,蕭澤強.連續(xù)鑄鋼過程數(shù)學(xué)物理模擬[M].北京:冶金工業(yè)出版社,2001.15-20. [3]周建男.鋼鐵生產(chǎn)工藝裝備新技術(shù)[M].北京:冶金工業(yè)出版社,2004.25-100.
[4] 王雅貞,張巖,劉術(shù)國.新編連續(xù)鑄鋼工藝及設(shè)備[ M] .北京: 冶金工業(yè)出版社,1999.6-15. [5]吳長壽,夏祥生.談中國鋼鐵連鑄的發(fā)展[J].江西冶金,2002,22(3):1-4. [6] 蔡開科.連鑄技術(shù)發(fā)展[J].山東冶金,2004,26(1):1-8.
[7] G.P.Kang,G.Shin, C.G.Kang.Development of New Model of Mold Oscillator in Continuous Casting[J].Journal of Mechanical Science and Technology,2007,21:421-425.[8] 張成元,鄭林.我國連鑄技術(shù)的發(fā)展[J].山西冶金,2007,106(30):15-30. [9] 張海軍,薛慶國.連鑄技術(shù)的最新發(fā)展趨勢[J].寬厚板,2005,11(6):42-45. [10]吳建鵬,余新河.薄板坯連鑄技術(shù)的現(xiàn)狀及應(yīng)用分析[J].煉鋼.2005,21(4),45-52. [11] 鄭林,趙?。K形連鑄技術(shù)的研究現(xiàn)狀及發(fā)展前景[J].江蘇冶金,2006,34(2):8-11. [12]許中波.我國連鑄技術(shù)的現(xiàn)狀與展望[J],煉鋼,2000,16(6):1-5.
第三篇:連鑄生產(chǎn)工藝的發(fā)展
連鑄生產(chǎn)工藝的發(fā)展
近年來,我國經(jīng)濟的快速增長,特別是工業(yè)和基本建設(shè)的加速,促進了鋼鐵工業(yè)的發(fā)展。我國已成為世界上鋼鐵消費和鋼鐵生產(chǎn)大國,粗鋼產(chǎn)量和消費量占世界總量的比例分別由1992年的11.2%和11.9%躍升到2002年的20.1%和25.8%,2002年鋼產(chǎn)量達到1.82億t。由于連鑄技術(shù)具有顯著的高生產(chǎn)效率、高成材率、高質(zhì)量和低成本的優(yōu)點,近二三十年已得到了迅速發(fā)展,目前世界上大多數(shù)產(chǎn)鋼國家的連鑄比超過90%。
連鑄技術(shù)對鋼鐵工業(yè)生產(chǎn)流程的變革、產(chǎn)品質(zhì)量的提高和結(jié)構(gòu)優(yōu)化等方面起了革命性的作用。我國自1996年成為世界第一產(chǎn)鋼大國以來,連鑄比逐年增加,2003年上半年連鑄比已經(jīng)達到了94.65%。
連鑄即為連續(xù)鑄鋼(英文,Continuous Steel Casting)的簡稱。在鋼鐵廠生產(chǎn)各類鋼鐵產(chǎn)品過程中,使用鋼水凝固成型有兩種方法:傳統(tǒng)的模鑄法和連續(xù)鑄鋼法。而在二十世紀五十年代在歐美國家出現(xiàn)的連鑄技術(shù)是一項把鋼水直接澆注成形的先進技術(shù)。與傳統(tǒng)方法相比,連鑄技術(shù)具有大幅提高金屬收得率和鑄坯質(zhì)量,節(jié)約能源等顯著優(yōu)勢。從上世紀八十年代,連鑄技術(shù)作為主導(dǎo)技術(shù)逐步完善,并在世界各地主要產(chǎn)鋼國得到大幅應(yīng)用,到了上世紀九十年代初,世界各主要產(chǎn)鋼國已經(jīng)實現(xiàn)了90%以上的連鑄比。中國則在改革開放后才真正開始了對國外連鑄技術(shù)的消化和移植;到九十年代初中國的連鑄比僅為30%。
連續(xù)鑄鋼的具體流程為:鋼水不斷地通過水冷結(jié)晶器,凝成硬殼后從結(jié)晶器下方出口連續(xù)拉出,經(jīng)噴水冷卻,全部凝固后切成坯料的鑄造工藝過程。統(tǒng)計數(shù)字顯示,2002年我國連鑄比為93.7%,2003年上半年全國連鑄比達到94.65%,已超過了世界8970%平均連鑄比的水平;我國連鑄比已達到發(fā)達國家的水平,連鑄比將要達到飽和狀態(tài)。全球已建成54流連鑄-連軋生產(chǎn)線,年生產(chǎn)能力為5500萬t;我國已建和在建13流生產(chǎn)線,年生產(chǎn)能力達到1400萬t(見表2),占全球總產(chǎn)量的1/4;中國CSP鋼產(chǎn)量(1050萬t)與美國CSP產(chǎn)量(1000萬t)相當。
提高連鑄機拉速 連鑄機拉速的提高受出結(jié)晶器坯殼厚度、液相穴長度(冶金長度)、二次冷卻強度等因素的限制。要針對連鑄機的不同情況,對連鑄機進行高效化改造。小方坯連鑄機高效化改造的核心就是提高拉速。拉速提高后,為了保證出結(jié)晶器坯殼不漏鋼,其核心技術(shù)就是優(yōu)化結(jié)晶器錐度,開發(fā)新型結(jié)晶器,包括:Concast的凸模結(jié)晶器(CONVEX MOLD);Danieli自適應(yīng)結(jié)晶器(DANAM);VAI的鉆石結(jié)晶器(DIAMOLD);Paul Wurth的多錐度結(jié)晶器。雖然結(jié)晶器名稱不相同,但其實質(zhì)就是使結(jié)晶器錐度與坯殼收縮相一致,不致于產(chǎn)生氣隙而減慢傳熱,影響坯殼均勻性生長。小方坯鑄機拉速的提高,表現(xiàn)為單流產(chǎn)量的提高。從世界連鑄發(fā)展的歷程來看,20世紀70、80、90年代連鑄機的單流年產(chǎn)量分別為5~6、8~10、15~16萬t。
我國鋼材生產(chǎn)結(jié)構(gòu)是長型材較多,板材比較低(約40%),反映在連鑄機建設(shè)上是中小型鋼廠建設(shè)小方坯連鑄機較多。據(jù)統(tǒng)計,我國共建小方坯連鑄機280臺978流,年產(chǎn)量近6000萬t,平均單流年產(chǎn)量約為6萬t。與國外比較,連鑄機生產(chǎn)率還較低。為提高連鑄機生產(chǎn)率,從20世紀90年代以來,我國對舊有小方坯連鑄機進行了高效化改造,如120mm×120mm方坯拉速由2.0m/min提高到3.0~4.0m/min,150mm×150mm方坯拉速由1.5m/min提高到2.5~3.0m/min。目前,我國不少鋼廠的小方坯連鑄機經(jīng)過高效化改造后,單流年產(chǎn)量已達到15~20萬t的國際水平。
板坯連鑄機拉速的水平目前板坯厚度為200~250mm的拉速在1.6~2.0m/min左右,單流年產(chǎn)量達到200萬t。如果說提高拉速是小方坯連鑄機高效化的核心,那么板坯連鑄機高效化的核心就是提高連鑄機作業(yè)率。這是因為板坯連鑄機的拉速受爐機匹配條件及鑄機本身冶金長度的限制不可能有較大的變化,以及由于過高拉速所造成的漏鋼危害,對板坯連鑄機的影響遠遠高于小方坯連鑄機。從原則上講,連鑄機提高拉速措施有:結(jié)晶器優(yōu)化技術(shù);結(jié)晶器液面波動檢測控制技術(shù);結(jié)晶器振動技術(shù);結(jié)晶器保護渣技術(shù);鑄坯出結(jié)晶器后的支掌技術(shù);二冷強化冷卻技術(shù);鑄坯矯直技術(shù);過程自動化控制技術(shù)。拉速提高了,鑄坯內(nèi)部疏松、偏析缺陷加重,夾雜物增加。高拉速與高質(zhì)量是相互矛盾的,因此應(yīng)根據(jù)鋼種和產(chǎn)品用途,采取相應(yīng)的技術(shù)措施,把高拉速和高質(zhì)量的矛盾統(tǒng)一起來,以獲得最佳經(jīng)濟效益。國外有不少鋼廠板坯連鑄機拉速不高,而單流產(chǎn)量卻很高,如美國A.K.Ashland鋼廠的板坯鑄機,澆240mm×1160~1750mm板坯,工作拉速為1.78m/min,單流年產(chǎn)量達到220萬t,連鑄機有鋼作業(yè)率為98%。這說明對板坯連鑄機高效化改造核心不是提高拉速,而是要設(shè)法提高鑄機作業(yè)率以提高
連鑄機的生產(chǎn)率。
提高連鑄機作業(yè)率的技術(shù)有:
(1)長時間澆注多爐連澆技術(shù):異鋼種多爐連澆;快速更換長水口;在線調(diào)寬;結(jié)晶器在線快速調(diào)厚度(只需25~30min);在線更換結(jié)晶器(小方坯);中間包熱循環(huán)使用技術(shù);防止浸入式水口堵塞技術(shù)。
(2)長時間澆注連鑄機設(shè)備長壽命技術(shù):長壽命結(jié)晶器,每次鍍層的澆鋼量為20~30萬t;長壽命的扇形段,上部扇形段每次維修的澆鋼量100萬t,下部扇形段每次維修的澆鋼量300~400萬t。
(3)防漏鋼的穩(wěn)定化操作技術(shù):結(jié)晶器防漏鋼預(yù)報系統(tǒng);結(jié)晶器漏鋼報警系統(tǒng);結(jié)晶器熱狀態(tài)運行檢測系統(tǒng)。
(4)縮短非澆注時間維護操作技術(shù):上裝引錠桿;扇形段自動調(diào)寬和調(diào)厚技術(shù);鑄機設(shè)備的快速更換技術(shù);采用各種自動檢測裝置;連鑄機設(shè)備自動控制水平。
提高板坯連鑄機設(shè)備堅固性、可靠性和自動化水平,達到長時間的無故障在線作業(yè),是提高板坯連鑄機作業(yè)率水平的關(guān)鍵。連鑄坯的質(zhì)量概念包括:鑄坯潔凈度(鋼中非金屬夾雜物數(shù)量,類型,尺寸,分布,形態(tài));鑄坯表面缺陷(縱裂紋,橫裂紋,星形裂紋,夾渣);鑄坯內(nèi)部缺陷(中間裂紋,角部裂紋,中心線裂紋,疏松,縮孔,偏析)。連鑄坯質(zhì)量控制戰(zhàn)略是:鑄坯潔凈度決定于鋼水進入結(jié)晶器之前的各工序;鑄坯表面質(zhì)量決定于鋼水在結(jié)晶器的凝固過程;鑄坯內(nèi)部質(zhì)量決定于鋼水在二冷區(qū)的凝固過程。提高鑄坯表面質(zhì)量的控制技術(shù) 鑄坯表面質(zhì)量好壞是熱送熱裝和直接軋制的前提條件。鑄坯表面缺陷的產(chǎn)生主要決定于鋼水在結(jié)晶器的凝固過程。要清除鑄坯表面缺陷,應(yīng)采用以下技術(shù):結(jié)晶器鋼液面穩(wěn)定性控制;結(jié)晶器振動技術(shù);結(jié)晶器內(nèi)凝固坯殼生長均勻性控制技術(shù);結(jié)晶器鋼液流動狀況合理控制技術(shù);結(jié)晶器保護渣技術(shù)。提高連鑄坯內(nèi)部質(zhì)量的控制技術(shù) 連鑄坯內(nèi)部缺陷一般情況在軋制時能焊合消除,但嚴重時會使中厚板力學(xué)性能惡化,使管線鋼氫脆和高碳硬線脆斷。鑄坯內(nèi)部缺陷的產(chǎn)生主要決定帶液芯的鑄坯在二冷區(qū)的凝固過程。要消除鑄坯內(nèi)部缺陷,可采用以下技術(shù)措施:低溫澆注技術(shù);鑄坯均勻冷卻技術(shù);防止鑄坯鼓肚變形技術(shù);輕壓下技術(shù);電磁攪拌技術(shù);凝固末端強冷技術(shù);多點或連續(xù)矯直技術(shù);壓縮鑄造技術(shù)。綜上所說我們可以得出結(jié)論:
(1)我國連鑄比已超過世界平均水平,接近工業(yè)發(fā)達國家水平,連鑄比可以說接近飽和狀態(tài)。
(2)我國小方坯連鑄機高效化改造取得很大成績。小方坯連鑄機單流產(chǎn)量已達到國際先進水平。但我國連鑄機平均作業(yè)率與世界連鑄機平均水平還存在較大差距。提高連鑄機作業(yè)率以增加連鑄機產(chǎn)量還有較大發(fā)展?jié)摿Α?/p>
(3)經(jīng)過近10多年來的努力,我國連鑄在高效化改造、新技術(shù)的應(yīng)用等方面取得了很大成就,就大中型企業(yè)連鑄機裝備水平來看已與國外鋼廠水平相當。要重視工藝軟件技術(shù)開發(fā)與創(chuàng)新,新技術(shù)要用出實效來。
(4)要依靠傳統(tǒng)的板坯和大方坯連鑄機來生產(chǎn)和解決高品質(zhì)、高附加值的連鑄坯質(zhì)量問題。薄板坯連鑄連軋技術(shù)已引入大中型企業(yè),我國薄板坯連鑄/連軋生產(chǎn)已跨入世界先進行列,它對改變我國鋼材產(chǎn)品結(jié)構(gòu),提高板帶比,改變熱軋帶卷的市場競爭力起重大的變革作用。
(5)在今后2~3年內(nèi),要密切注意薄帶連鑄領(lǐng)域取得的進展。
第四篇:連鑄三大件發(fā)展現(xiàn)狀
武漢科技大學(xué)耐火材料新技術(shù)課程論文
連鑄“三大件”發(fā)展現(xiàn)狀
姓名:徐騰騰 班級:無機非金屬材料工程(卓越)1101 學(xué)號:201102128116 摘要:整體塞棒、長水口(大包長水口)和浸入式水口(中包所用水口),稱為連鑄“三大件”。連鑄“三大件”在煉鋼生產(chǎn)中處于十分重要的位置,主要起到保護澆注和控流的作用,他們質(zhì)量的好壞對于連鑄乃至整個鋼廠生產(chǎn)的連續(xù)性與穩(wěn)定性有重要的意義。其材質(zhì)主要是鋁碳質(zhì),以氧化鋁和炭素為原料,大多數(shù)情況下還加入添加劑,如SiC、單質(zhì)Si等,用瀝青或樹脂等有機結(jié)合劑粘結(jié)而成的碳復(fù)合耐火材料。成型方法采用等靜壓成型。本文主要從連鑄“三大件”的原材料、生產(chǎn)過程、應(yīng)用及在使用中出現(xiàn)的問題分析其發(fā)展現(xiàn)狀。
關(guān)鍵詞:連鑄 三大件 發(fā)展現(xiàn)狀 AlO-C 前言
進入2000年以后, 隨著連鑄技術(shù)的日臻成熟,高效連鑄技術(shù)已成為鋼鐵行業(yè)發(fā)展重點。高效連鑄技術(shù)是以高拉速為核心,以高質(zhì)量連鑄坯無缺陷生產(chǎn)為基礎(chǔ),實現(xiàn)高連澆率、高作業(yè)率連鑄的系統(tǒng)技術(shù)。連鑄速度的提高、連澆時間的延長,通過保護澆鑄水口的鋼水流速流量也顯著提高, 因此對連鑄用耐材提出了更高的要求。連鑄過程中所用的整體塞棒、長水口和浸入式水口在生產(chǎn)技術(shù)、產(chǎn)品品種、質(zhì)量水平方面,正逐步追趕紓解先進水平,取代某些進口產(chǎn)品,以滿足我國煉鐵生產(chǎn)發(fā)展的需要。
延長連鑄“三大件”的壽命是需求方最大的要求,由其所處環(huán)境和組成考慮,主要提高他們對渣液的抗侵蝕能力和高溫抗氧化性。本文簡述我國連鑄“三大件”的原料、生產(chǎn)過程、應(yīng)用的發(fā)展現(xiàn)狀;解決其存在的壽命低、成本高、生產(chǎn)復(fù)雜的問題。通過對其從原料到成品和所處環(huán)境的分析,以及與國外產(chǎn)品的對比,選擇最合理的成分組成和成型方式,提高性價比。從而減少鋼鐵生產(chǎn)成本,促進鋼鐵工業(yè)的發(fā)展。連鑄“三大件”使用環(huán)境 武漢科技大學(xué)耐火材料新技術(shù)課程論文
連鑄“三大件”在連鑄系統(tǒng)中所使用的位置如圖:
2.1 塞棒
塞棒的功能主要是用于中間包開閉,除能自動控制中間包至結(jié)晶器的鋼水流量外,還可通過塞棒的吹氬孔,向中間包吹入氬氣和其它惰性氣體,塞棒還具有控制鋼流和凈化的功能。連鑄生產(chǎn)過程中,整體塞棒頭部受侵蝕、沖刷嚴重,特別是澆鑄某些特鋼,如經(jīng)Ca、Si處理的鋼種或P、S合金化的高速切削鋼,塞棒頭部侵蝕過快,常因無法控制鋼流速度而報廢。整體塞棒使用前必須烘烤到800~1000℃方能使用,長時間的烘烤會使鋁碳制品表面石墨氧化呈疏松狀態(tài),導(dǎo)致制品耐侵蝕性和使用壽命降低,在使用時會造成制品斷裂和穿孔事故。
2.2 長水口
當鋼水由鋼包向中間包澆注時,為了避免氧化和飛濺,在鋼包底部的滑動水口的下端安裝長水口,一端與下水口相連,另一端插入中間包的鋼水內(nèi)進行密封保護澆注。長水口其作用如下:(1)防止鋼水二次氧化,改善鋼的質(zhì)量;(2)減少鋼中易氧化元素的氧化產(chǎn)物在水口內(nèi)壁沉積,延長其使用壽命;(3)長水口可多次使用,降低耐火材料消耗。對鋁碳質(zhì)長水口,通過加入適量低膨脹材料(熔融石英、鈦酸鋁),增韌材料(氧化鋯)和鋼纖維補強等的基礎(chǔ)上,為進一步改善其性能從材質(zhì)上又采取提高水口中Al2O3含量,減少SiO2加入量,以確保熱震性能,提高使用壽命。
2.3 浸入式水口
在連鑄技術(shù)中,浸入式水口渣線部位被嚴重侵蝕,以及防止氧化鋁附著造成水口的堵塞,為提高鑄坯質(zhì)量,在中間包與結(jié)晶器之間設(shè)有浸入式水口,其主要作用是:(1)防止鋼水二次氧化氮化和鋼水的飛濺;(2)調(diào)節(jié)鋼水流動狀態(tài)和注入速度;(3)防止保護渣非金屬夾雜物卷入鋼水中,對促進鋼水中夾雜物的上浮起重要作用;(4)對邊鑄拉坯成材率和鑄坯質(zhì)量有決定性影響。浸入式水口具有一定的氣孔率,同樣具有透氣性,外界空氣在鋼水流動產(chǎn)生的負壓作用下滲透到水口內(nèi)部,與鋼水接觸使其氧化。因此在長水口和浸入式水口的外表面必須涂一層防氧化釉層。武漢科技大學(xué)耐火材料新技術(shù)課程論文
3連鑄“三大件”原料選擇 3.1 簡介
近年來,國內(nèi)連鑄鋼產(chǎn)量不斷增加,連鑄“三大件”大多采用Al2O3-C質(zhì)材料制作,在使用條件最苛刻的部位如渣線、塞棒頭等部位用ZrO2-C材料,并加入BN、Si3N4、B4C3、Al、Si以及塞隆、阿隆等復(fù)合添加劑以提高其使用壽命。為滿足特殊性能鋼的需要,近年一些廠家還開發(fā)了低碳、無碳和低硅、無硅的復(fù)合產(chǎn)品。
3.2 骨料
鋁碳質(zhì)耐火材料中的Al2O3組分主要選用電熔剛玉、燒結(jié)剛玉。電熔或燒結(jié)氧化鋁原料的價格貴、硬度大。電熔氧化鋁是指以高鋁礬土或工業(yè)氧化鋁為原料在電弧爐內(nèi)熔融并除去雜質(zhì)冷卻后得到的熔塊;其特點是氧化鋁含量高,剛玉晶粒完整粗大,化學(xué)穩(wěn)定性高。電熔剛玉有兩種生產(chǎn)方法,一是間歇式熔塊法(脫殼爐);二是半連續(xù)式傾倒法(煉鋼電爐)。燒結(jié)氧化鋁是以工業(yè)氧化鋁為原料,經(jīng)高溫煅燒制的低氣孔率氧化鋁。
碳在Al2O3-C制品中的作用如下:在顆??障秲?nèi)或在顆粒之間形成脈狀網(wǎng)絡(luò)碳鏈結(jié)構(gòu),形成“碳結(jié)合”,從而降低制品的氣孔率,提高制品的高溫強度;碳還可以形成不受金屬和熔渣侵蝕的表面,提高制品的抗侵蝕性和耐熱沖擊性;此外,碳的存在為鐵、硅氧化物的還原提供條件,生成的氣體能夠阻止渣向耐火材料內(nèi)部滲透;碳還可以耐火制品的導(dǎo)熱性,避免制品的某個部位因溫度過高而導(dǎo)致制品的剝落、斷裂。鋁碳質(zhì)耐火材料中的炭素材料以鱗片狀石墨為主,也可采用熱解高純石墨,優(yōu)勢還加入炭黑。
3.3 添加劑
抗氧化劑有金屬Al、Si粉及SiC粉。加入少量抗氧化劑能延緩含碳層氧化,提高制品使用壽命。
3.4 結(jié)合劑
鋁碳質(zhì)耐火材料常用的結(jié)合劑有:樹脂、焦油、瀝青等。采用熱固性酚醛樹脂結(jié)合劑及烏洛托品硬化劑,生成不溶解、不固溶的固化物,高溫時的殘余碳量高,其使用性能優(yōu)良。
4連鑄“三大件”的生產(chǎn)過程
連鑄“三大件”雖然功能不同,但有著相同或相似的材質(zhì)、結(jié)構(gòu)特點、使用條件、性能要求等,因而在生產(chǎn)中采用幾乎完全相同的工藝。這3種產(chǎn)品的結(jié)構(gòu)及高性能特點決定了它們從生產(chǎn)工藝到所用原料不同于其他耐火材料。除少量浸入式水口為熔融石英質(zhì)外,絕大多數(shù)為鋁炭質(zhì):形狀之細長需采用等靜壓成型,高石墨含量配料采用樹脂結(jié) 武漢科技大學(xué)耐火材料新技術(shù)課程論文
合劑形成碳結(jié)合,保護氣氛熱處理。連鑄“三大件”是一類技術(shù)含量高的耐火材料產(chǎn)品,對工藝過程、工藝參數(shù)的選擇控制,對工藝裝備的水平都有較嚴格的要求,以保證產(chǎn)品質(zhì)量高度穩(wěn)定。具體制造工藝過程包括以下主要工序:原料——坯料制備——等靜壓成型——熱處理——機加工、探傷、檢選、表面防氧化涂層、包裝等。
4.1 原料
連鑄“三大件”所用原料可分為如下幾類:主體耐火原料,石墨原料,功能添加劑和有機結(jié)合劑等。原料的選擇對產(chǎn)品的品質(zhì)、使用效果有很大的影響。因此生產(chǎn)三大件產(chǎn)品對原料的純度、粒度、乃至結(jié)構(gòu)都有較嚴格的要求。
4.1.1 主體耐火原料
涉及多種高檔氧化物原料,如各種類型的剛玉原料、電熔氧化鎂、尖晶石、電熔氧化鋯、熔融石英,電熔鋯莫來石等,依產(chǎn)品之不同和部位之不同而選擇不同原料為主體耐火原料。三大件產(chǎn)品本體用剛玉原料或高鋁原料,渣線采用部分穩(wěn)定的電熔氧化鋯原料,塞棒棒頭、水口碗部處依澆注鋼種不同而選用剛玉、電熔氧化鎂、尖晶石等材質(zhì)。熔融石英,鋯莫來石常作為改善抗熱震性原料部分引入。主體原料的種類、品質(zhì)、粒度配比與產(chǎn)品抗熱震性、抗侵蝕性、抗沖刷性密切相關(guān)。一般骨料粒度不大于1mm,產(chǎn)品關(guān)鍵部位選用高純度電熔原料。
4.1.2 石墨原料
連鑄“三大件”產(chǎn)品中均大量采用天然鱗片石墨,石墨組分對產(chǎn)品的最重要貢獻是賦予其高抗熱震性以適應(yīng)使用時高溫鋼液的強烈熱沖擊。但其致命缺點是氧化問題,石墨的氧化和連鑄操作條件、石墨的品位、粒度大小等都有關(guān)系。多數(shù)觀點認為石墨的純度越高,抗侵蝕性和抗氧化性越好,有些廠家對石墨原料還進行精制處理以進一步減少雜質(zhì)含量。
4.1.2.1 納米碳纖維
納米碳纖維不僅具有石墨極優(yōu)良的本征特性,如耐熱、耐腐蝕、耐熱沖擊、傳熱和 武漢科技大學(xué)耐火材料新技術(shù)課程論文
導(dǎo)熱性好、高溫強度高等性能。由于過渡金屬元素Co,Ni的微粒具有沉積碳的作用,郭巍將過渡金屬元素引入Al2O3-C耐火材料中生長了納米碳纖維,本文研究納米碳纖維在Al2O3-C耐火材料中生長可能受哪些因素影響。因此,本文將酚醛樹脂或瀝青作為碳源,過渡金屬鹽作為催化劑引入到Al2O3-C 耐火材料中,用兩種熱處理溫度采用催化裂解法原位反應(yīng)生成碳纖維,分析碳纖維顯微結(jié)構(gòu)以及它在Al2O3-C 耐火材料中生長受哪些因素影響,并對催化生長機制進行探討。4.1.2.1.1 實驗部分
實驗原料選擇燒結(jié)板狀剛玉、鋯莫來石、高純鱗片、石墨金屬硅和碳化硅,以熱固性酚醛樹脂作結(jié)合劑,外加一定量的硝酸鎳/硝酸鈷,各種原料的理化指標如表1 所示:實驗中所用熱固性酚醛樹脂固含量85%,殘?zhí)剂?5%;硝酸鎳、硝酸鈷為分析純.按試樣配方稱量好原料,催化劑硝酸鎳、硝酸鈷與白剛玉粉混合后再通過干燥、球磨后得到復(fù)合粉體,按照一定的混合順序?qū)⒋诸w粒、石墨、酚醛樹脂、細粉在混砂機中將物料混合均勻;干燥24h后,利用萬能壓力機在170kN的壓力下壓制成50mm×50mm的圓柱試樣;將干燥好的試樣裝在匣缽在埋碳條件下進行1200和1400℃保溫3h的熱處理,利用Hitachi S-3400N掃描電鏡和能譜儀對熱處理后的試樣顯微形貌和成分進行分析。4.1.2.1.2 實驗結(jié)果及分析
以液體酚醛樹脂和瀝青為碳源,分別以過渡金屬鹽(硝酸鎳、硝酸鈷)為催化劑,用兩種溫度制度(1200℃保溫3h,1400℃保溫3h)進行埋碳熱處理,用化學(xué)沉積法制備納米碳纖維。采用掃描電子顯微鏡對產(chǎn)物進行表征,探討碳納米纖維生長機理及考察制備工藝(熱處理溫度、催化劑種類、催化劑加入量)對碳纖維形貌、微觀結(jié)構(gòu)的影響。圖1為分別以0.5%(質(zhì)量百分比)的硝酸鎳、硝酸鈷(分析純)為催化劑,以酚醛樹脂為碳源,在1200,1400℃兩種燒成制度下試樣的顯微形貌,來考察不同燒成制度、不同催化劑對催化裂解法原位合成碳納米纖維的影響。從圖1(1)(3)中可以看出,在1200℃時,硝酸鈷、硝酸鎳為催化劑都有碳纖維生長,圖1(1)中在鋁碳耐火材料基體縫隙中生長出管狀碳纖維,圖1(3)中在鋁碳耐火材料基體表面生長出節(jié)狀碳纖維.從圖1(2),(4)中可以看出,在1400℃時,催化劑基本被碳所包裹,失去活性,導(dǎo)致碳納米纖維的生長受到抑制溫度影響著化學(xué)反應(yīng)的進行,根據(jù)Lindermann離子理論,單分子發(fā)生熱反應(yīng)所需要的能量只依靠。子本身提高能量是遠遠不夠的,還通過分子與分子之間相互碰撞來提供能量;當溫需要度升高,超過一定速度的粒子數(shù)目會隨著溫度的升高迅速增加,反應(yīng)粒子的碰撞頻繁發(fā)生,活化中間物的濃度升高,反應(yīng)產(chǎn)物在催化劑上的脫附能力也隨之增加,進而促進了基體碳沉積.圖2 為不同碳源以硝酸鎳、硝酸鈷為催化劑1200℃熱處理后試樣的顯微形貌。從圖2(1),(3)中可以看出,以酚醛樹脂為碳源的試樣中都有大量碳纖維生長,從圖2(2),(4)中可以看出,加入以瀝青為碳源的試樣中只有少量納米碳纖維生長;圖2(1)加入硝酸鈷的鋁碳耐火材料基體內(nèi)生長出大量結(jié)節(jié)狀碳纖維物質(zhì),這些纖維狀物質(zhì)呈叢狀生長在鋁碳耐火材料基體的縫隙,直徑大約2μm,長度約幾十μm。圖2(3)武漢科技大學(xué)耐火材料新技術(shù)課程論文
加入硝酸鎳的鋁碳耐火材料基體內(nèi)生長出大量管狀碳纖維物質(zhì),直徑約幾百nm,長度約為幾十μm。瀝青和酚醛樹脂的碳化過程是不一樣的。瀝青為液相碳化過程,受熱時首先熔化,經(jīng)過所謂“中間體”的“液晶體”變?yōu)楣腆w,即這種“液晶體”或“各向異性”組織促進了碳的石墨化.酚醛樹脂是熱硬性樹脂,其碳化過程為固相碳化,不像瀝青那樣形成各向異性的“結(jié)晶中間體”,故形成的碳難以石墨化,碳化產(chǎn)物通常是各向同性的無定型碳。鋁碳質(zhì)耐火材料用酚醛樹脂作結(jié)合劑,加入量為3%~8%。酚醛樹脂在加熱到約200~800℃時發(fā)生分解,在生成固定碳的同時,放出CO2,CH4,CO,H2以及H2O等氣體,由于碳化產(chǎn)物的不同,使得樹脂碳和瀝青碳的抗氧化能力存在明顯的差別,在同樣的熱處理溫度下得到的樹脂碳氧化的開始溫度和氧化峰值溫度均較瀝青碳低。1200℃用酚醛樹脂作碳源先到達碳氧化開始溫度,分解催化劑顆粒,從而生長出納米結(jié)構(gòu)的纖維。實驗中試樣的結(jié)合劑酚醛樹脂在400~800℃分解出的CO,CH4,C2H2,CO2等氣體,可以作為合成碳納米結(jié)構(gòu)的碳源,同時由于鋁碳耐火材料試樣是在1200℃下埋碳燒成,其燒成過程包含了合成碳納米結(jié)構(gòu)的溫度區(qū)間(600~1200℃),另外納米結(jié)構(gòu)碳所需的催化劑在鋁碳耐火材料配料時加入,這些因素為納米結(jié)構(gòu)的碳提供了生長條件。酚醛樹 武漢科技大學(xué)耐火材料新技術(shù)課程論文
脂為結(jié)合劑加熱后提供碳源,根據(jù)前面觀察Al2O3-C 耐火材料中納米碳纖維的顯微形貌觀察到了烴類氣體熱解碳的三種聚集形態(tài): 顆粒、片及纖維。Al2O3-C耐火材料中納米碳纖維生長機理與氣相生長碳纖維的生長機理相符合。氣相生長碳纖維的生長機理可用表面擴散來定性說明納米碳纖維的生長過程,認為烴分子先被吸附在金屬的某個晶面上,在加熱過程中分解出來碳原子,碳原子溶解到金屬內(nèi)部,再由吸附碳原子的一面擴散到另一面,并以碳纖維的形式在此面析出。假設(shè)該過程是一個化學(xué)平衡過程,納米碳纖維就可以連續(xù)不斷地生長,直到金屬吸附烴原子的面被碳原子完全包裹住,此時烴分子停止分解。在這一機制中,金屬-金屬碳氫物質(zhì)在催化劑顆粒表面擴散,析出碳纖維,中空管是由于催化劑顆粒和基體間的接觸角而形成。
由上述機理可知,當碳纖維生長結(jié)束時,催化劑微粒以類球形存在于生成的每根纖維的頂端,因此所得碳纖維的頂端直徑較下端大;同時由此機理可以得出,納米碳纖維的生長與催化劑的加入量及粒度有關(guān)。當加入催化劑粒度過大或加入量過多時,催化分解后金屬顆粒將發(fā)生團聚,造成催化劑失活,而不利于納米碳纖維的生長,甚至使纖維無法生長。
從圖1,2可以看出,不同催化劑加入鋁碳耐火材料中納米碳纖維的形貌有很大的不 武漢科技大學(xué)耐火材料新技術(shù)課程論文
同,硝酸鎳和硝酸鈷為碳源的耐火材料中都有納米碳纖維/納米碳管生成,硝酸鈷為碳源生成的節(jié)狀的碳纖維比較粗大,硝酸鎳為碳源生成的納米碳纖維比較細長且中空,推測生成的是納米碳纖維。通過觀察和分析碳納米纖維的生成量、形貌和分布,鎳鹽的催化效果最好,鈷鹽其次,這是因為從C-Ni,C-Co 二元相圖可以看出:在550℃時,碳在這二種金屬中的溶解度分別為0.067%,0.009%。碳在金屬中的溶解度越大,碳與金屬之間的可潤濕性就越好,即它們之間的界面作用力相對就越小,能在碳纖維表面平鋪開來,在還原時就容易形成較小的顆粒。所以催化劑顆粒從大到小的順序為: Co > Ni.在一定范圍內(nèi)隨著催化劑顆粒粒徑增大,所制碳納米纖維的直徑也增大。在碳纖維表面能否長出納米碳纖維/納米碳管,這與催化劑的選擇和反應(yīng)溫度有關(guān)。Co和Ni的催化作用都較好,能成功地長出納米碳纖維/納米碳管,但相比之下以Ni 為催化劑時,生長的納米碳纖維/納米碳管直徑更細。4.1.2.1.3 結(jié)論
(1)在常規(guī)的制備工藝條件下,加入硝酸鎳/硝酸鈷催化劑,Al2O3-C耐火材料基體內(nèi)都能生長出納米碳纖維狀物質(zhì),加入量為2.0% 生長納米碳纖維量最大,以硝酸鎳作催化劑長出的納米碳纖維要比以硝酸鈷作催化劑長出的納米碳纖維直徑更細。
(2)推測納米碳纖維在Al2O3-C耐火材料中原位生長因素可能與燒成制度、催化劑種類和加入量,碳源有關(guān)。以酚醛樹脂為碳源,Al2O3-C耐火材料試樣中有大量的碳纖維生長;以瀝青為碳源,Al2O3-C耐火材料中,只有少量碳纖維生長;加入硝酸鈷和硝酸鎳,Al2O3-C 耐火材料試樣中都有納米碳纖維生長,催化劑加入量為2.0% 時,碳纖維生成量比較大。同等條件下,1200℃熱處理碳纖維生長效果好于1400℃熱處理。
4.1.3 功能添加劑
為有針對性地改善連鑄“三大件”產(chǎn)品的使用性能,常在配料中加入一定量的起改性作用的添加劑,如防氧化添加劑抑制或減緩石墨在使用過程中的氧化,低熔點、低膨脹系數(shù)添加劑緩沖熱應(yīng)力提高抗熱沖擊性等。目前所應(yīng)用的功能耐火材料多數(shù)是碳結(jié)合的含碳耐火材料,防氧化問題是在產(chǎn)品組成設(shè)計時必須考慮的問題。添加防氧化劑和表面防氧化涂層是在生產(chǎn)連鑄用含碳耐火材料時慣用的措施,常用的防氧化添加劑有金屬鋁粉、硅粉、碳化硅、碳化硼、Al-Si、從Mg合金粉等等。這些添加劑或者在熱處理過程中生成非氧化物如SiC、Si3N4、SiAlON、AlN等增強材料,或者在使用過程中它們可先于石墨與氧反應(yīng),能將CO(g)還原成C,抑制制品中C的消耗速度;生成C和氧化物,提高耐火材料的致密度、形成保護層、促進石墨結(jié)晶、提高高溫強度等。4.1.3.1 納米添加劑
隨著納米技術(shù)的發(fā)展,納米粉生產(chǎn)成本降低,分散技術(shù)提高,納米粉應(yīng)用范圍擴大。德國研究人員在降低Al2O3-C耐火材料中碳(石墨)含量的同時添加納米粉,以期改善Al2O3 -C耐火材料的抗熱震性和高溫抗折強度。試驗的基礎(chǔ)配比(w)為: 電熔剛玉(粒度≤0.2 武漢科技大學(xué)耐火材料新技術(shù)課程論文
mm)29.1%,板狀剛玉粗顆粒(粒度≤0.6 mm)38.9%,天然石墨粉(粒度≤0.040 mm)10%,天然鱗片石墨顆粒(粒度>0.071mm)10%,高純單質(zhì)Si粉(粒度≤0.150 mm)6%,熱塑性酚醛樹脂(液體和固體)6%,固化劑六亞甲基四胺(烏洛托品)0.6%(外加)。納米添加劑分別為納米尖晶石S10(粒徑為(10±3)nm)、納米板狀剛玉粉AS(粒徑為10~250 nm)和中國產(chǎn)碳納米管TN(比表面積>200 m2.g-1),各自的添加量(外加,w)分別為0.0%、0.1%、0.3%,加入方式有單獨添加和復(fù)合添加。所有原料在室溫下混合(納米粉在液體酚醛樹脂加入后分步加入,以便被液體酚醛樹脂盡可能地潤濕)后,以100 MPa壓力壓制成25 mm×25 mm×150 mm 的試樣,在180℃熱處理后分別在1 000 和1400℃煅燒5h。檢測燒后試樣的顯氣孔率、體積密度、常溫耐壓強度、常溫抗折強度、高溫抗折強度(1400℃)、抗熱震性(空冷法,以5次熱震后的抗折強度保持率表征),并進行XRD、SEM和EDS分析。結(jié)果表明:(1)添加S10、AS或TN均可以提高Al2O3 -C材料的常溫強度、高溫強度和抗熱震性。其中,以加入S10 的試樣的常溫抗折強度、高溫抗折強度和抗熱震性最好;加入AS 的試樣的強度較高,但抗熱震性欠佳;加入TN 的試樣的抗熱震性最差。(2)復(fù)合添加TN 和AS 的試樣的性能得到進一步改善,常溫抗折強度和高溫抗折強度都增大,抗熱震性優(yōu)異,5次熱震后的抗折強度保持率高達99.2%;1000℃熱處理后,該試樣中出現(xiàn)了呈互鎖網(wǎng)絡(luò)結(jié)構(gòu)的片狀A(yù)l3CON 晶相,這是由納米板狀氧化鋁與碳納米管反應(yīng)形成的,是連接碳和氧化鋁的化學(xué)相,使材料具有優(yōu)異的熱態(tài)強度。(3)SEM分析顯示,添加S10、AS 或TN 的試樣在1000℃煅燒后均原位形成了Si-O晶須或纖維,其形態(tài)(長度、直徑)以及晶相取決于納米添加劑的種類。4.1.3.2 防氧化劑
防氧化涂料原料選擇的關(guān)鍵在于所引入的助熔劑的種類和數(shù)量,因為加入不同的助熔劑后防氧化涂料的熔化溫度、熔融狀態(tài)下的粘度、揮發(fā)溫度和線膨脹系數(shù)不同,其次是原料的組分要合適。防氧化涂料多選用堿性助熔劑和酸性助熔劑:堿性助熔劑選用Li2O、K2O、Na2O、MgO、CaO等;酸性助熔劑選用B2O3和SiO2。Li2O、K2O和Na2O是強助熔劑,在鋁硅二元系中引入以上3種氧化物都可明顯地降低出現(xiàn)液相的溫度,適用于防氧化涂料,但缺點是這三種氧化物在高溫下都易揮發(fā)。B2O3熔點為450度,在防氧化涂料中形成硼酸鹽,可減少龜裂。SiO2是所有釉料的主要組分之一,如果油料中的SiO2含量過高,則會提高防氧化涂料的高溫粘度,降低長石的助融能力,提高防氧化涂料液相的出現(xiàn)溫度;如果其含量過少,則熔融防氧化涂料容易從坯體上流下或被坯體吸收。另外,由于二氧化硅的線膨脹系數(shù)比較低,所以在防氧化涂料中增加二氧化硅的含量,可降低防氧化涂料的線膨脹系數(shù),使防氧化涂料與坯體的線膨脹系數(shù)相匹配,防止坯體在使用過程中開裂。
因此,研制滿足連鑄“三大件”使用的防氧化涂料,必須根據(jù)成釉氧化物的溫度范圍以及成釉氧化物的具體特點,合理的選用原料,使其中的組分發(fā)揮其優(yōu)勢,提高防氧化涂料的成釉溫度范圍。本試驗中, 選擇石英、硼熔塊、鉀長石和鋰輝石為主要原料, 武漢科技大學(xué)耐火材料新技術(shù)課程論文
其化學(xué)組成見表1。
B2O3是以硼熔塊的形式引入的, 因為硼熔塊有以下優(yōu)點:(1)硼熔塊中不含結(jié)晶水, 在干燥和燒成過程中體積變化小,可減少防氧化涂料的收縮開裂現(xiàn)象;(2)硼熔塊在700度左右就開始熔融軟化, 在高溫時防氧化涂層可以隨著坯體的體積變化而變化;(3)硼熔塊熔融溫度范圍廣;(4)硼熔塊能降低釉料的高溫粘度, 使坯體在高溫時產(chǎn)生的氣體容易排出。4.1.3.2.1 實驗過程
1.防氧化涂料的制備
將各原料分別磨成< 0.044mm的粉料,并加入能使防氧化涂料施工及烘干后有適當強度的結(jié)合劑(一種溶劑)。為使防氧化涂料在700~1350度均形成光亮的釉層,防止連鑄三大件制品的氧化,經(jīng)過多次試驗,篩選出各原料的最佳加入量(質(zhì)量分數(shù)): 石英40%, 硼熔塊40%, 鉀長石15%,鋰輝石5%,外加色劑5%和結(jié)合劑50% ~70%。各原料按配比放入球磨機中,加入結(jié)合劑,料、球與結(jié)合劑的質(zhì)量比為1 B 2 B(0.5~0.7),混磨2~5h出磨,出磨時料漿需過0.125mm篩子,并控制料漿密度在1.62 ~1.80g/cm-3之間。
2.防氧化涂料的施工
將制備好的料漿用兩層刷涂的方式涂于連鑄三大件產(chǎn)品的表面, 每層厚度一般控制在0.25~0.45 mm,釉層總厚度一般控制在0.6~1mm為最佳。因為隨著防氧化涂層厚度的增大,防氧化涂層開裂等缺陷增多,而且防氧化涂層厚,生產(chǎn)成本也隨之提高;但防氧化涂層太薄, 涂層的防氧化效果較差。施釉后的坯體首先放在60~70度的干燥房中烘干2~5h,然后在120度下烘干,烘干時間大于等于8h。烘干后的防氧化涂料要求和坯體結(jié)合強度高,不龜裂,不起泡,不脫落。
3.防氧化涂料的燒成
將烘干后的連鑄三大件試樣放在電爐中, 在氧化氣氛下燒成,燒成條件分別為700度3h、1100度3h、1350度3h,燒成后的試樣防氧化涂層外觀光滑,沒有棕眼、毛孔和滾釉等缺陷。切開后觀察斷面情況,發(fā)現(xiàn)試樣在各溫度點均沒有發(fā)現(xiàn)有氧化現(xiàn)象。說明本涂料在高溫氧化氣氛下對連鑄三大件產(chǎn)品有很好的保護效果。一般情況下, 燒后的防氧化涂層容易出現(xiàn)棕眼、毛孔和滾釉等缺陷, 這主要是防氧化涂料在干燥和燒成早期出現(xiàn)裂紋造成的,出現(xiàn)裂紋部位的防氧化涂層在高溫時與坯體剝離, 造成愈合不完全, 形成棕眼和滾釉等缺陷。雖然連鑄三大件產(chǎn)品的主要成分都為鋁碳,但工作條件不同, 各自的添 武漢科技大學(xué)耐火材料新技術(shù)課程論文
加物也不同, 同一種防氧化涂料用在長水口上,使用效果較好, 但用在整體塞棒和浸入式口上效果可能會一般。通過試驗發(fā)現(xiàn),三大件產(chǎn)品中浸入式水口對防氧化涂料要求較苛刻, 所以把防氧化涂料的主要工作集中在浸入式水口上。在試驗中也證實了連鑄三大件發(fā)生氧化的溫度多集中在550~700度和1100度以上的溫度段。因為含碳耐火材料在550 e 時碳開始氧化, 而防氧化涂料在550度沒有產(chǎn)生液相,或產(chǎn)生的液相量相對較少,不足以封閉含碳制品表面,所以為提高含碳耐火材料的使用壽命,如果烘烤條件允許,在550~700度溫度區(qū)間應(yīng)提高升溫速度。另外,防氧化涂料在1100度以上烘烤及使用時,隨著時間的延長,防氧化涂層變薄甚至被坯體吸收。這是因為涂料中的Na2O、K2O、Li2O 和B2O3揮發(fā),如果其他組分不合適時,防氧化涂層容易變薄,最后消失,失去了對含碳耐火材料的保護作用。防氧化涂料的使用狀態(tài)連鑄三大件防氧化涂料一般有兩種狀態(tài):一種是含碳制品防氧化涂層不經(jīng)高溫成釉直接去現(xiàn)場使用,制品在烘烤及使用時成釉,現(xiàn)多數(shù)生產(chǎn)含碳連鑄三大件廠家普遍采用這種生產(chǎn)工藝;另一種是噴涂防氧化涂料的制品經(jīng)高溫窯快速燒成,防氧化涂層已形成釉層,這種防氧化涂料的使用效果較好,并且也避免了因涂料吸潮而影響了防氧化效果,但這種工藝增加了生產(chǎn)成本。
4.使用
選用鉀長石、鋰輝石、石英及硼熔塊等為主要原料研制的防氧化涂料, 涂在浸入式水口表面,經(jīng)烘干后, 涂層和水口外表面附著良好,涂層沒有出現(xiàn)裂紋及鼓泡現(xiàn)象,強度較高。涂有試驗涂料的浸入式水口在某鋼廠試用。鋼廠采用浸入式水口和中間包同時烘烤的方式,烘烤時間12h,烘烤最高溫度1000度。浸入式水口的使用時間為12h,使用后的浸入式水口取碗口部向下150mm 處切開,發(fā)現(xiàn)水口外部有8mm左右的輕微氧化現(xiàn)象,其余為未氧化層。釉層顏色黑亮,沒有裂紋產(chǎn)生,說明涂料和浸入式水口本體的線膨脹系數(shù)匹配,并且涂料自身愈合性較好。從使用結(jié)果可知,涂有本試驗防氧化涂料的浸入式水口,氧化主要發(fā)生在低溫烘烤階段,就防氧化涂料的使用效果來看,已經(jīng)滿足了使用要求。
5.結(jié)語
(1)使用鉀長石、鋰輝石、石英及硼熔塊為主要原料,可開發(fā)出性能優(yōu)良的防氧化涂料。
(2)防氧化涂料對連鑄三大件失去防氧化作用多發(fā)生在成釉前及部分氧化物揮發(fā)后。
(3)連鑄三大件的組分不同, 對防氧化涂料的要求也不同。
4.1.4 結(jié)合劑
連鑄“三大件”幾乎無例外地采用酚醛樹脂作為結(jié)合劑,連鑄“三大件”的熱處理實際上就是控制樹脂碳化,形成碳結(jié)合,賦予制品有足夠的使用強度。所用樹脂的基本要求是性能穩(wěn)定、殘?zhí)几?、黏度合適。樹脂的特點是碳化時會排放和分解出大量氣體,對制品強度和氣孔率都有較大或決定性影響,進而影響到了制品的使用性能,選擇一種 武漢科技大學(xué)耐火材料新技術(shù)課程論文
合適的樹脂是生產(chǎn)高質(zhì)量產(chǎn)品的重要環(huán)節(jié)。樹脂的加入量因材料的不同、石墨含量的不同而有所區(qū)別,一般在總量的6%~12%之間。
4.2 坯料制備
連鑄“三大件”坯料質(zhì)量是影響到后續(xù)工藝和最終產(chǎn)品性能好壞的非常關(guān)鍵的因素,是保證產(chǎn)品具有均勻一致組織結(jié)構(gòu)和性能的前提條件。對坯料的要求是:合適的樹脂加入量,各組分分布均勻,有造粒效果,流動性好,成型性好。坯料制備設(shè)備和工藝參數(shù)的選擇對此有重要影響。常用混料設(shè)備為高速混練機,混料過程為按合理的加料順序加入骨料、預(yù)混合粉料、石墨、樹脂等,混練,兼具造粒作用。烘干設(shè)備可采用耐火材料常規(guī)干燥設(shè)備,也可采用流化干燥床,操作中要嚴格控制干燥溫度和坯料的干燥程度,以保障有良好的成型性能和坯體強度,一般干燥溫度不超過80℃。
4.3 成型
根據(jù)連鑄“三大件”的外型細長、中間有流鋼通道的結(jié)構(gòu)特點和使用時高可靠性、高重現(xiàn)性的要求,生產(chǎn)中采用冷等靜壓應(yīng)是當前最合適的成型方式,能保證細長中空結(jié)構(gòu)的水口在整個長度方向上具有相同的品質(zhì)。所用設(shè)備為冷等靜壓機,液體介質(zhì),橡膠模套,鋼制模芯。較合適的工藝參數(shù)是壓力取120~200 MPa,一定的升壓、保壓和卸壓曲線。
4.4 熱處理
熱處理作用在于使樹脂分解碳化,形成碳結(jié)合,賦予制品以合適的強度和性能。在熱處理工藝中,為防止石墨氧化,控制熱處理氣氛為惰性或還原氣氛,熱處理制度的制定參照樹脂在加熱過程中的揮發(fā)分的排出和分解反應(yīng)溫度而制定,熱處理溫度常取900~1250℃,熱處理設(shè)備多為梭式窯。
4.5 無損探傷
連鑄“三大件”在使用上的不可重復(fù)性要求產(chǎn)品杜絕任何內(nèi)部損傷,產(chǎn)品檢測需采用無損探傷,所用儀器為X光探傷儀。
4.6 加工和表面涂層
等靜壓成型品的外型尺寸,特別是配合尺寸尚達不到要求精度,三大件產(chǎn)品局部或全部外型尺寸需進行加工。同時,為防止在現(xiàn)場烘烤和使用時免遭氧化,產(chǎn)品表面要涂以保護涂料。所配制的涂料在較低溫度下(600~750℃)能熔化成釉,并能在產(chǎn)品表面良好鋪展和能在較寬的溫度范圍內(nèi)維持黏度無大的變化,起到保護石墨不氧化作用。
雖然連鑄“三大件”在原材料選用,生產(chǎn)工藝,性能要求等方面有諸多相同之處,但由于使用位置不同,使用條件不同,所起的功能不完全相同,在最終產(chǎn)品的要求上有所不同,在材質(zhì),結(jié)構(gòu)等方面還有各自的特點。武漢科技大學(xué)耐火材料新技術(shù)課程論文
4連鑄“三大件”使用中的問題
鋁碳質(zhì)水口由于具有一系列的優(yōu)點,但也存著下列問題: 碳可以增加耐火材料的抗熱震性,并在一定程度上增加材料的耐腐蝕性,但是由于含有碳,使得耐火材料對氧化非常敏感,一旦材料中的碳被氧化,就會使強度降低,鋼水就會輕易的穿過脫碳層,造成材料的侵蝕。因不耐侵蝕而導(dǎo)致在渣線部位形成縮頸現(xiàn)象甚至斷裂;水口內(nèi)壁容易被鋼水脫氧產(chǎn)物Al2O3 等沉積而堵塞水口。并且由于新連鑄技術(shù)的采用,澆鋼溫度高,拉速高,保護渣粘度較低,因而保護渣對浸入式水口的侵蝕加劇,Al2O3-C已不能滿足這些種苛刻條件。為了解決上述問題,上個世紀80年代日本從材質(zhì)開發(fā)出一種Al2O3C質(zhì)復(fù)合材料。這是由于氧化鋯具有優(yōu)良的化學(xué)穩(wěn)定性, 難以被以CaO中的ZrO2 增強了熔渣的粘度, 而未被溶解的氧化鋯顆粒又增強了渣的表觀粘度。從而降低了保護渣對氧化鋯-石墨渣線層的侵蝕,提高了水口的耐侵蝕性。實踐證明,優(yōu)質(zhì)鋁鋯碳質(zhì)復(fù)合水口比鋁碳質(zhì)水口壽命提高近一倍,使用壽命可達到1200min。武漢鋼鐵學(xué)院和秦皇島耐火材料廠合作,于1988年在國內(nèi)首先試制成功了鋁碳/鋯碳復(fù)合式水口,最高澆鑄爐數(shù)11 爐(通鋼量789.4t),使用后的水口磚無剝落, 無裂紋, 復(fù)合式水口無異?,F(xiàn)象,水口孔側(cè)渣線處平均侵蝕速度0.720mm爐~0.95mm爐,水口內(nèi)徑侵蝕速度為0.125mm爐~0.166mm爐。目前, 我國石英質(zhì)水口的使用壽命為4~5次,鋁碳質(zhì)水口的使用壽命為5~7次,鋁碳一鋯碳質(zhì)復(fù)合水口的使用壽命為6~9次,明顯優(yōu)于前兩種。例如青島耐火廠生產(chǎn)的鋁碳一鋯碳質(zhì)復(fù)合水口在寶鋼大板坯連鑄機上應(yīng)用,其壽命為6~8次,連澆時間為330min~440min,通鋼量750t~1200t,Al2O3附著不超過3mm~4mm。
參考文獻
[1] 謝長清.攀成鋼圓坯連鑄“三大件”的生產(chǎn)與應(yīng)用[J].四川冶金,2013(2): 1~5 [2] 翟國華,馬春紅.我國連鑄“三大件”產(chǎn)品的質(zhì)量現(xiàn)狀[J].耐火材料,1999(5): 1~3 [3] 李彩霞,陳勇,耿勝平.連鑄三大件用防氧化涂料的研制與使用[J].耐火材料2005(5): 1~2 [4] 李楠,顧華志,趙惠忠.耐火材料學(xué)[M].冶金工業(yè)出版社.2010:263~266 368~371 [5] 尹高,曹旗.連鑄“三大件”生產(chǎn)線專用設(shè)備的研制與應(yīng)用[J].耐火材料學(xué).2000 武漢科技大學(xué)耐火材料新技術(shù)課程論文
(1):1-3 [6] 王先陶,王又康.攀鋼連鑄用耐火材料[J].四川冶金.1998(3):55-57 [7] 董文全.連鑄“三大件”的功能與發(fā)展[J].中國冶金報.2003:1-2 [8] 趙瑞,王新福,閆廣周.連鑄侵入式水口(SEM)的發(fā)展.安徽冶金科技職業(yè)學(xué)院學(xué)報.2006(1):1-4 [9] 孫朔.連鑄浸入式水口抗渣侵材料的制備與研究[J].2009:48-52 [10] 趙瑞.納米添加劑對材料性能的影響[J].2012(3): 1 [11] 朱芷頤,安勝利,郭巍.納米碳纖維在中原位生長因素的研究[J].2013(3)1-5
第五篇:連鑄工藝范文
連鑄工藝流程介紹
----冶金自動化系列專題
【導(dǎo)讀】:轉(zhuǎn)爐生產(chǎn)出來的鋼水經(jīng)過精煉爐精煉以后,需要將鋼水鑄造成不同類型、不同規(guī)格的鋼坯。連鑄工段就是將精煉后的鋼水連續(xù)鑄造成鋼坯的生產(chǎn)工序,主要設(shè)備包括回轉(zhuǎn)臺、中間包,結(jié)晶器、拉矯機等。本專題將詳細介紹轉(zhuǎn)爐(以及電爐)煉鋼生產(chǎn)的工藝流程,主要工藝設(shè)備的工作原理以及控制要求等信息。由于時間的倉促和編輯水平有限,專題中難免出現(xiàn)遺漏或錯誤的地方,歡迎大家補充指正。【發(fā)表建議】
連鑄的目的: 將鋼水鑄造成鋼坯。
連鑄的工藝流程:
將裝有精煉好鋼水的鋼包運至回轉(zhuǎn)臺,回轉(zhuǎn)臺轉(zhuǎn)動到澆注位置后,將鋼水注入中間包,中間包再由水口將鋼水分配到各個結(jié)晶器中去。結(jié)晶器是連鑄機的核心設(shè)備之一,它使鑄件成形并迅速凝固結(jié)晶。拉矯機與結(jié)晶振動裝置共同作用,將結(jié)晶器內(nèi)的鑄件拉出,經(jīng)冷卻、電磁攪拌后,切割成一定長度的板坯。【查看全文】
連鑄自動化控制工藝流程圖
連鑄自動化控制主要有連鑄機拉坯輥速度控制、結(jié)晶器振動頻率的控制、定長切割控制等控制技術(shù)?!静榭慈摹?/p>
連鑄的主要工藝設(shè)備介紹:
鋼包回轉(zhuǎn)臺
鋼包回轉(zhuǎn)臺:設(shè)在連鑄機澆鑄位置上方用于運載鋼包過跨和支承鋼包進行澆鑄的設(shè)備。由底座、回轉(zhuǎn)臂、驅(qū)動裝置、回轉(zhuǎn)支撐、事故驅(qū)動控制系統(tǒng)、潤滑系統(tǒng)和錨固件6部分組成?!静榭慈摹?/p>
中間包
中間包是短流程煉鋼中用到的一個耐火材料容器,首先接受從鋼包澆下來的鋼水,然后再由中間包水口分配到各個結(jié)晶器中去?!静榭慈摹?/p>
結(jié)晶器
在連續(xù)鑄造、真空吸鑄、單向結(jié)晶等鑄造方法中,使鑄件成形并迅速凝固結(jié)晶的特種金屬鑄型。結(jié)晶器是連鑄機的核心設(shè)備之一,直接關(guān)系到連鑄坯的質(zhì)量?!静榭慈摹?/p>
拉矯機
在連鑄工藝中,連鑄機拉坯輥速度控制是連鑄機的三大關(guān)鍵技術(shù)之一,拉坯速度控制水平直接影響連鑄坯的產(chǎn)量和質(zhì)量,而拉坯輥電機驅(qū)動裝置的性能又在其中發(fā)揮著重要作用。【查看全文】
電磁攪拌器
電磁攪拌器(Electromagnetic stirring: EMS)的實質(zhì)是借助在鑄坯液相穴中感生的電磁力,強化鋼水的運動。具體地說,攪拌器激發(fā)的交變磁場滲透到鑄坯的鋼水內(nèi),就在其中感應(yīng)起電流,該感應(yīng)電流與當?shù)卮艌鱿嗷プ饔卯a(chǎn)生電磁力,電磁力是體積力,作用在鋼水體積元上,從而能推動鋼水運動?!静榭慈摹?/p>
冷卻噴嘴
冷卻噴嘴具有結(jié)構(gòu)簡單、噴霧均勻的特點,根據(jù)噴霧面積需要,可在集管上安裝許多噴嘴,當噴嘴均勻排列時,可保證噴霧的互相交叉,并略有重疊部分,使整個集管噴射分布均勻;主要適用于連鑄機、初軋和各種需要扁平噴霧冷卻的機械設(shè)備中?!静榭慈摹?/p>
火焰切割機
火焰切割機也叫氧氣切割。根據(jù)切割鋼板的厚度安裝適當孔徑的割嘴;【查看全文】
連鑄系統(tǒng)也是一個比較復(fù)雜的系統(tǒng),用到的自動化產(chǎn)品比較多,下面列舉部分產(chǎn)品出來:
常用到的自動化設(shè)備:PLC、組態(tài)軟件、變頻器、工控機、工業(yè)以太網(wǎng)交換機等等。
連鑄自動化控制工藝流程圖
圖片:
連鑄自動化控制工藝流程圖:
將裝有精煉好鋼水的鋼包運至回轉(zhuǎn)臺,回轉(zhuǎn)臺轉(zhuǎn)動到澆注位置后,將鋼水注入中間包,中間包再由水口將鋼水分配到各個結(jié)晶器中去。結(jié)晶器是連鑄機的核心設(shè)備之一,它使鑄件成形并迅速凝固結(jié)晶。拉矯機與結(jié)晶振動裝置共同作用,將結(jié)晶器內(nèi)的鑄件拉出,經(jīng)冷卻、電磁攪拌后,切割成一定長度的板坯。
有連鑄機拉坯輥速度控制、結(jié)晶器振動頻率的控制、定長切割控制等主要控制技術(shù)。
圖片:
水平連鑄控制工藝流程圖: 圖片:
圖片:
圖片:
圖片:
圖片:
生產(chǎn)線實景圖:
連鑄工藝詳解
連鑄的生產(chǎn)工藝流程:將裝有精煉好鋼水的鋼包運至回轉(zhuǎn)臺,回轉(zhuǎn)臺轉(zhuǎn)動到澆注位置后,將鋼水注入中間包,中間包再由水口將鋼水分配到各個結(jié)晶器中去。結(jié)晶器是連鑄機的核心設(shè)備之一,它使鑄件成形并迅速凝固結(jié)晶。拉矯機與結(jié)晶振動裝置共同作用,將結(jié)晶器內(nèi)的鑄件拉出,經(jīng)冷卻、電磁攪拌后,切割成一定長度的板坯。
連鑄鋼水的準備
一、連鑄鋼水的溫度要求:
鋼水溫度過高的危害:①出結(jié)晶器坯殼薄,容易漏鋼;②耐火材料侵蝕加快,易導(dǎo)致鑄流失控,降低澆鑄安全性;③增加非金屬夾雜,影響板坯內(nèi)在質(zhì)量;④鑄坯柱狀晶發(fā)達;⑤中心偏析加重,易產(chǎn)生中心線裂紋。
鋼水溫度過低的危害:①容易發(fā)生水口堵塞,澆鑄中斷;②連鑄表面容易產(chǎn)生結(jié)皰、夾渣、裂紋等缺陷;③非金屬夾雜不易上浮,影響鑄坯內(nèi)在質(zhì)量。
二、鋼水在鋼包中的溫度控制:
根據(jù)冶煉鋼種嚴格控制出鋼溫度,使其在較窄的范圍內(nèi)變化;其次,要最大限度地減少從出鋼、鋼包中、鋼包運送途中及進入中間包的整個過程中的溫降。
實際生產(chǎn)中需采取在鋼包內(nèi)調(diào)整鋼水溫度的措施: 1)鋼包吹氬調(diào)溫
2)加廢鋼調(diào)溫
3)在鋼包中加熱鋼水技術(shù)
4)鋼水包的保溫
中間包鋼水溫度的控制
一、澆鑄溫度的確定
澆鑄溫度是指中間包內(nèi)的鋼水溫度,通常一爐鋼水需在中間包內(nèi)測溫3次,即開澆后5min、澆鑄中期和澆鑄結(jié)束前5min,而這3次溫度的平均值被視為平均澆鑄溫度。
澆鑄溫度的確定可由下式表示(也稱目標澆鑄溫度):
T=TL+△T。
二、液相線溫度:
即開始凝固的溫度,就是確定澆鑄溫度的基礎(chǔ)。推薦一個計算公式:
T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[%Ni]+1.3[%Cr]+3.6[%Al]+2.0[%Mo]+2.0[%V]+18[%Ti]}
三、鋼水過熱度的確定
鋼水過熱度主要是根據(jù)鑄坯的質(zhì)量要求和澆鑄性能來確定。
鋼種類別
過熱度
非合金結(jié)構(gòu)鋼
10-20℃
鋁鎮(zhèn)靜深沖鋼
15-25℃
高碳、低合金鋼
5-15℃
四、出鋼溫度的確定
鋼水從出鋼到進入中間包經(jīng)歷5個溫降過程:
△T總=△T1+△T2+△T3+△T4+△T5 △T1出鋼過程的溫降;
△T2出完鋼鋼水在運輸和靜置期間的溫降(1.0~1.5℃/min);
△T3鋼包精煉過程的溫降(6~10℃/min);
△T4精煉后鋼水在靜置和運往連鑄平臺的溫降(5~1.2℃/min);
△T5鋼水從鋼包注入中間包的溫降。
T出鋼 = T澆+△T總
控制好出鋼溫度是保證目標澆鑄溫度的首要前提。具體的出鋼溫度要根據(jù)每個鋼廠在自身溫降規(guī)律調(diào)查的基礎(chǔ)上,根據(jù)每個鋼種所要經(jīng)過的工藝路線來確定。
拉速的確定和控制
一、拉速控制作用:
拉速定義:拉坯速度是以每分鐘從結(jié)晶器拉出的鑄坯長度來表示。拉坯速度應(yīng)和鋼液的澆注速度相一致。拉速控制合理,不但可以保證連鑄生產(chǎn)的順利進行,而且可以提高連鑄生產(chǎn)能力,改善鑄坯的質(zhì)量.現(xiàn)代連鑄追求高拉速。
二、拉速確定原則:
確保鑄坯出結(jié)晶器時的能承受鋼水的靜壓力而不破裂,對于參數(shù)一定的結(jié)晶器,拉速高時,坯殼??;反之拉速低時則形成的坯殼厚。一般,拉速應(yīng)確保出結(jié)晶器的坯殼厚度為12-14mm。
影響因素:鋼種、鋼水過熱度、鑄坯厚度等。
1)機身長度的限制
根據(jù)凝固的平方根定律,鑄坯完全凝固時達到的厚度: 又機身長度:
得到拉速:
2)拉坯力的限制
拉速提高,鑄坯中的未凝固長度變長,各相應(yīng)位置上凝固殼厚度變薄,鑄坯表面溫度升高,鑄坯在輥間的鼓肚量增多。拉坯時負荷增加。超過拉拔轉(zhuǎn)矩就不能拉坯,所以限制了拉速的提高。3)結(jié)晶器導(dǎo)熱能力的限制
根據(jù)結(jié)晶器散熱量計算出,最高澆注速度:
板坯為2.5米/分
方坯為3-4米/分
4)拉坯速度對鑄坯質(zhì)量的影響
(1)降低拉速可以阻止或減少鑄坯內(nèi)部裂紋和中心偏析
(2)提高拉速可以防止鑄坯表面產(chǎn)生縱裂和橫裂
(3)為防止矯直裂紋,拉速應(yīng)使鑄坯通過矯直點時表面溫度避開鋼的熱脆區(qū)。
5)鋼水過熱度的影響
一般連鑄規(guī)定允許最大的鋼水過熱度,在允許過熱度下拉速隨著過熱度的降低而提高,如圖1所示。
6)鋼種影響:就含碳量而言,拉坯速度按低碳鋼、中碳鋼、高碳鋼的順序由高到低。就鋼中合金含量而言,拉速按普碳鋼、優(yōu)質(zhì)碳素鋼、合金鋼順序降低。
圖1 拉速與溫度對應(yīng)表
第四節(jié) 鑄坯冷卻的控制
鋼水在結(jié)晶器內(nèi)的冷卻即一冷確定,其冷卻效果可以由通過結(jié)晶器壁傳出的熱流的大小來度量,如圖2所示。
圖2 鋼水在結(jié)晶器內(nèi)的冷卻
1)一冷作用:一冷就是結(jié)晶器通水冷卻。其作用是確保鑄坯在結(jié)晶器內(nèi)形成一定的初生坯殼。
2)一冷確定原則:一冷通水是根據(jù)經(jīng)驗,確定以在一定工藝條件下鋼水在結(jié)晶器內(nèi)能夠形成足夠的坯殼厚度和確保結(jié)晶器安全運行的前提。通常結(jié)晶器周邊供水2L/mm·min。進出水溫差不超過8℃,出水溫度控制在45-500℃為宜,水壓控制在0.4-0.6Mpa。
3)二冷作用:二次冷卻是指出結(jié)晶器的鑄坯在連鑄機二冷段進行的冷卻過程.其目的是對帶有液芯的鑄坯實施噴水冷卻,使其完全凝固,以達到在拉坯過程中均勻冷卻.4)二冷強度確定原則:二冷通常結(jié)合鑄坯傳熱與鑄坯冶金質(zhì)量兩個方面來考慮.鑄坯剛離開結(jié)晶器,要采用大量水冷卻以迅速增加坯殼厚度,隨著鑄坯在二冷區(qū)移動,坯殼厚度增加,噴水量逐漸降低.因此,二冷區(qū)可分若干冷卻段,每個冷卻段單獨進行水量控制.同時考慮鋼種對裂紋敏感性而有針對性的調(diào)整二冷噴水量.5)二冷水量與水壓:對普碳鋼低合金鋼,冷卻強度為:1.0-1.2L/Kg鋼。對低碳鋼、高碳鋼,冷卻強度為:0.6-0.8L/Kg鋼。對熱裂紋敏感性強的鋼種,冷卻強度為:0.4-0.6L/Kg鋼,水壓為0.1-0.5MPa,如圖3所示。
圖3 凝固系數(shù)與二冷水量關(guān)系
連鑄過程檢測與自動控制
一、連鑄過程自動檢測
(一)中間包鋼液溫度測定
1)中間包鋼液溫度的點測
用快速測溫頭及數(shù)字顯示二次儀測量溫度,如圖4所示。
圖4 二次溫度測量儀
2)中間包鋼液溫度的連續(xù)測定
采用連續(xù)測溫熱電偶對中間包鋼液溫度進行連續(xù)測量,如圖5所示。
圖5 連續(xù)測溫熱電偶
(二)結(jié)晶器液面控制
1)放射性同位素測量法如圖6所示:
圖6 放射性同位素測量法
2)紅外線結(jié)晶器液面測量法如圖7所示:
圖7 紅外線結(jié)晶器液面測量法
3)熱電偶結(jié)晶器液面測量法如圖8所示:
圖8 熱電偶結(jié)晶器液面測量法
4)激光結(jié)晶器液面測量法如圖9所示:
圖9 激光結(jié)晶器液面測量法
(三)連鑄機漏鋼預(yù)報裝置如圖10所示:
圖10 連鑄機漏鋼預(yù)報裝置
(四)連鑄二次冷卻水控制如圖11所示:
圖11 連鑄二次冷卻水控制
(五)鑄坯表面缺陷在線檢測
1)工業(yè)電視攝象法如圖12所示:
圖12 工業(yè)電視攝象法
2)渦流檢測法如圖13所示:
圖13 渦流檢測法
二、連鑄坯表面質(zhì)量及控制
(一)連鑄過程質(zhì)量控制
1)提高鋼純凈度的措施
(1)無渣出鋼
(2)選擇合適的精煉處理方式
(3)采用無氧化澆注技術(shù)
(4)充分發(fā)揮中間罐冶金凈化器的作用
(5)選用優(yōu)質(zhì)耐火材料
(6)充分發(fā)揮結(jié)晶器的作用
(7)采用電磁攪拌技術(shù),控制注流運動
(二)連鑄坯表面質(zhì)量及控制
連鑄坯表面質(zhì)量的好壞決定了鑄坯在熱加工之前是否需要精整,也是影響金屬收得率和成本的重要因素,還是鑄坯熱送和直接軋制的前提條件。
連鑄坯表面缺陷形成的原因較為復(fù)雜,但總體來講,主要是受結(jié)晶器內(nèi)鋼液凝固所控制,如圖14所示。
圖14 連鑄坯表面缺陷示意圖
(三)連鑄坯內(nèi)部質(zhì)量及控制
鑄坯的內(nèi)部質(zhì)量是指鑄坯是否具有正確的凝固結(jié)構(gòu)、偏析程度、內(nèi)部裂紋、夾雜物含量及分布狀況等。
凝固結(jié)構(gòu)是鑄坯的低倍組織,即鋼液凝固過程中形成等軸晶和柱狀晶的比例。鑄坯的內(nèi)部質(zhì)量與二冷區(qū)的冷卻及支撐系統(tǒng)密切相關(guān),如圖15,圖16所示。
圖15 鑄坯內(nèi)部缺陷示意圖
圖16 “V”形偏析
1)減少鑄坯內(nèi)部裂紋的措施
(1)采用壓縮澆鑄技術(shù),或者應(yīng)用多點矯直技術(shù)
(2)二冷區(qū)采用合適夾輥輥距,支撐輥準確對弧
(3)二冷水分配適當,保持鑄坯表面溫度均勻
(4)合適拉輥壓下量,最好采用液壓控制機構(gòu)
2)夾雜物的控制
從煉鋼
精煉 連鑄生產(chǎn)潔凈鋼,主要控制對策是:
(1)控制煉鋼爐下渣量
● 擋渣法(偏心爐底出鋼、氣動法、擋渣球)
● 扒渣法:目標是鋼包渣層厚<50mm,下渣2Kg/t
(2)鋼包渣氧化性控制
● 出鋼渣中高(FeO+MnO)是渣子氧勢量度。(FeO+MnO)↑板胚T[O]↑
(3)鋼包精煉渣成分控制
不管采用何種精煉方法(如RH、LF、VD),合理攪拌強度和合理精煉渣組成是獲得潔凈鋼水的基礎(chǔ)。
合適的鋼包渣成分:CaO/ Al2O3=1.5~1.8,CaO/ SiO2=8~13,(FeO+MnO)<5%。高堿度、低熔點、低氧化鐵、富CaO鈣鋁酸鹽的精煉渣,能有效吸收大顆粒夾雜物,降低總氧。
(4)保護澆注
● 鋼水保護是防止鋼水再污染生產(chǎn)潔凈鋼重要操作
● 保護澆注好壞判斷指標:-△[N]=[N]鋼包-[N]中包;-△[Al]s=[Al]鋼包-[Al]中包
● 保護方法:①中包密封充Ar;②鋼包
中間包長水口,△[N]=1.5PPm甚至為零;③中間包
結(jié)晶器浸入式水口
(5)中間包控流裝置
● 中間包不是簡單的過渡容器,而是一個冶金反應(yīng)容器,作為鋼水進入結(jié)晶器之前進一步凈化鋼水
● 中間包促進夾雜物上浮其方法:
a.增加鋼水在中間包平均停留時間t:t=w/(a×b×ρ×v)。中間包向大容量深熔池方向發(fā)展。
b.改變鋼水在中間包流動路徑和方向,促進夾雜物上浮。
(6)中間包復(fù)蓋劑
中間包是鋼水去除夾雜物理想場所。鋼水面上復(fù)蓋劑要有效吸收夾雜物。
● 碳化稻殼;
● 中性渣:(CaO/SiO2=0.9~1.0)
● 堿性渣:(CaO+MgO/SiO2≥3)
● 雙層渣
渣中(SiO2)增加,鋼水中T[O]增加。生產(chǎn)潔凈鋼應(yīng)用堿性復(fù)蓋劑。
(7)堿性包襯
鋼水與中間包長期接觸,鋼水與包襯的熱力學(xué)性能必須是穩(wěn)定的,這是生產(chǎn)潔凈鋼的一個重要條件。包襯材質(zhì)中SiO2增加,鑄坯中總氧T[O]是增加,因此生產(chǎn)潔凈鋼應(yīng)用堿性包襯。
對低碳Al-K鋼,中間包襯用Mg-Ca質(zhì)涂料(Al2O3→0),包襯反應(yīng)層中Al2O3可達21%,說明能有效吸附夾雜物。
(8)鋼種微細夾雜物去除
● 大顆粒夾雜(>50μm)去除,采用中間包控流技術(shù)
● 小顆粒夾雜(<50μm)去除:
-中間包鈣質(zhì)過濾器
-中間包電磁旋轉(zhuǎn)
(9)防止?jié)沧⑦^程下渣和卷渣
● 加入示蹤劑追蹤鑄坯中夾雜物來源
● 結(jié)晶器渣中示蹤劑變化
● 鑄坯中夾雜物來源,初步估算外來夾雜物占41.6%二次氧化占 39%,脫氧產(chǎn)物為20%
(10)防止Ar氣泡吸附夾雜物
對Al-K鋼,采用浸入式水口吹A(chǔ)r防止水口堵塞,但吹A(chǔ)r會造成:
● 水口堵塞物破碎進入鑄胚,大顆粒Al2O3軋制延伸會形成表面成條狀缺陷
● <1mmAr氣泡上浮困難,它是Al2O3和渣粒的聚合地,當氣泡尺寸>200μm易在冷軋板表面形成條狀缺陷。
為解決水口堵塞問題,可采用:
-鈣處理改善鋼水可澆性
-鈣質(zhì)水口
-無C質(zhì)水口
目前還是廣泛采用吹A(chǔ)r來防止堵塞。生產(chǎn)潔凈鋼總的原則是:鋼水進入結(jié)晶器之前盡可能排除Al2O3。
(11)結(jié)晶器鋼水流動控制
三、連鑄坯形狀缺陷及控制
(一)鼓肚變形
帶液心的鑄坯在運行過程中,于兩支撐輥之間,高溫坯殼中鋼液靜壓力作用下,發(fā)生鼓脹成凸面的現(xiàn)象,稱之為鼓肚變形。板坯寬面中心凸起的厚度與邊緣厚度之差叫鼓肚量,用以衡量鑄坯彭肚變形程度。
減少鼓肚應(yīng)采取措施 :
(1)降低連鑄機的高度
(2)二冷區(qū)采用小輥距密排列;鑄機從上到下輥距應(yīng)由密到疏布置
(3)支撐輥要嚴格對中
(4)加大二冷區(qū)冷卻強度
(5)防止支撐輥的變形,板坯的支撐輥最好選用多節(jié)輥
圖17 鑄坯鼓肚示意圖
(二)菱形變形
菱形變形也叫脫方。是大、小方坯的缺陷。是指鑄坯的一對角小于90°,另一對角大于90°;兩對角線長度之差稱為脫方量。
應(yīng)對菱變的措施 :
(1)選用合適錐度的結(jié)晶器
(2)結(jié)晶器最好用軟水冷卻
(3)保持結(jié)晶器內(nèi)腔正方形,以使凝固坯殼為規(guī)正正的形狀
(4)結(jié)晶器以下的600mm距離要嚴格對?。徊⒋_保二冷區(qū)的均勻冷卻
(5)控制好鋼液成分
(三)圓鑄坯變形
圓坯變形成橢圓形或不規(guī)則多邊形。圓坯直徑越大,變成隨圓的傾向越嚴重。形成橢圓變形的原因有:
(1)圓形結(jié)晶器內(nèi)腔變形
(2)二冷區(qū)冷卻不均勻
(3)連鑄機下部對弧不準
(4)拉矯輥的夾緊力調(diào)整不當,過分壓下
可采取相應(yīng)措施:
(1)及時更換變形的結(jié)晶器
(2)連鑄機要嚴格對弧
(3)二冷區(qū)均勻冷卻
(4)可適當降低拉速
(四)夾雜物的控制
提高鋼純凈度的措施:
(1)無渣出鋼
(2)選擇合適的精煉處理方式
(3)采用無氧化澆注技術(shù)
(4)充分發(fā)揮中間罐冶金凈化器的作用
(5)選用優(yōu)質(zhì)耐火材料
(6)充分發(fā)揮結(jié)晶器的作用
(7)采用電磁攪拌技術(shù),控制注流運動
(五)間包冶金
當前對鋼產(chǎn)品質(zhì)量的要求變得更加嚴格。中間包不僅僅只是生產(chǎn)中的一個容器,而且在純凈鋼的生產(chǎn)中發(fā)揮著重要作用。
70年代認識到改變中間包形狀和加大中間包容積可以達到延長鋼液的停留時間,提高夾雜物去除率的目的;安裝擋渣墻,控制鋼液的流動,實現(xiàn)夾雜物有效碰撞、長大和上浮。80年代發(fā)明了多孔導(dǎo)流擋墻和中間包過濾器。
在防止鋼水被污染的技術(shù)開發(fā)中,最近已有實質(zhì)性的進展。借助先進的中間包設(shè)計和操作如中間包加熱,熱周轉(zhuǎn)操作,惰性氣氛噴吹,預(yù)熔型中間包渣,活性鈣內(nèi)壁,中間包喂絲,以及中間包夾雜物行為的數(shù)學(xué)模擬等,中間包在純凈鋼生產(chǎn)中的作用體現(xiàn)得越來越重要。
在現(xiàn)代連鑄的應(yīng)用和發(fā)展過程中,中間包的作用顯得越來越重要,其內(nèi)涵在被不斷擴大,從而形成一個獨特的領(lǐng)域——中間包冶金。
中間包冶金的最新技術(shù):
(1)H型中間包
(2)離心流中間包
(3)中間包吹氬
(4)去夾雜的陶瓷過濾器
(5)電磁流控制
圖18 H型中間包 [連鑄設(shè)備]鋼包回轉(zhuǎn)臺
鋼包回轉(zhuǎn)臺
鋼包回轉(zhuǎn)臺:設(shè)在連鑄機澆鑄位置上方用于運載鋼包過跨和支承鋼包進行澆鑄的設(shè)備。由底座、回轉(zhuǎn)臂、驅(qū)動裝置、回轉(zhuǎn)支撐、事故驅(qū)動控制系統(tǒng)、潤滑系統(tǒng)和錨固件6部分組成。
鋼包回轉(zhuǎn)臺的作用是將位于受包位置的滿載鋼包回轉(zhuǎn)至澆鋼位置,準備進行澆注,同時將澆完鋼水的空包轉(zhuǎn)至受包位置,準備運走。鋼包回轉(zhuǎn)臺大致有3種類型:
單臂鋼包回轉(zhuǎn)臺:由底座、立柱、上轉(zhuǎn)臂、上轉(zhuǎn)臂驅(qū)動裝置、下轉(zhuǎn)臂、下轉(zhuǎn)臂驅(qū)動裝置組成。蝶形鋼包回轉(zhuǎn)臺:由底座、升降液壓缸、回轉(zhuǎn)架、鋼包支座、回轉(zhuǎn)臂、平行連桿、驅(qū)動裝置、防護板組成。
鋼包回轉(zhuǎn)臺是連鑄機的關(guān)鍵設(shè)備之一,起著連接上下兩道工序的重要作用。鋼包回轉(zhuǎn)臺的回轉(zhuǎn)情況基本上包括兩側(cè)無鋼包、單側(cè)有鋼包、兩側(cè)有鋼包三種情況,而單個鋼包重量已超過140噸。三種情況下,鋼包回轉(zhuǎn)臺受力有很大不同,但無論在何種情況下,都要保證鋼包回轉(zhuǎn)臺的旋轉(zhuǎn)平穩(wěn),定位準確,起停時要盡可能減小對機械部分的沖擊,為減少中間包液面波動和溫降,要縮短旋轉(zhuǎn)時間。因此,我們在變頻器的容量選擇上,留有余地,即比電機功率加大一級。同時利用變頻器的s曲線加速功能,通過調(diào)整s曲線保證加、減速曲線平滑快速,減少對減速機的沖擊,再通過PLC判斷變速限位、停止限位實現(xiàn)旋轉(zhuǎn)過程中高、低速自動變換及到位停車,同時滿足了對旋轉(zhuǎn)時間和平穩(wěn)運行的要求。
[連鑄設(shè)備]中間包
中間包是短流程煉鋼中用到的一個耐火材料容器,首先接受從鋼包澆下來的鋼水,然后再由中間包水口分配到各個結(jié)晶器中去。
連鑄機鋼水包和結(jié)晶器之間鋼水過渡的裝置,用來穩(wěn)定鋼流,減小鋼流對坯殼的沖刷,以利于非金屬夾雜物上浮,從而提高鑄坯質(zhì)量。
[連鑄設(shè)備]結(jié)晶器
在連續(xù)鑄造、真空吸鑄、單向結(jié)晶等鑄造方法中,使鑄件成形并迅速凝固結(jié)晶的特種金屬鑄型。
結(jié)晶器包括:
直型結(jié)晶器、弧形結(jié)晶器 curved mold:用于弧型和超低頭型(橢圓型)連鑄機上。
組合式結(jié)晶器 composite mold:由四塊壁板組成,每塊壁板又由一塊銅板和一塊鋼(鐵)板用螺栓連接而成。
多級結(jié)晶器 multi stage mold
調(diào)寬結(jié)晶器 adjustable mold:寬度可調(diào)的結(jié)晶器,一般只用于板坯連鑄。
結(jié)晶器是連鑄機的核心設(shè)備之一,直接關(guān)系到連鑄坯的質(zhì)量。結(jié)晶器的振動頻率要求準確,并根據(jù)拉坯速度自動調(diào)整,在高振頻時,由于電機負載率上升,轉(zhuǎn)差率增加,導(dǎo)致振動頻率有所降低,而為了保證振動頻率的精確,需要打開變頻器的轉(zhuǎn)差補償控制,在負載增加時,使變頻器自動增加輸出頻率以提供在沒有速度降低情況下所需要的電機轉(zhuǎn)差率,補償量正比于負載的增加量,并在整個調(diào)速范圍內(nèi)都起作用。
另外,結(jié)晶器的振動是由電機帶動偏心機構(gòu)旋轉(zhuǎn)來實現(xiàn)的,因此表現(xiàn)為輸出電流及母線電壓呈現(xiàn)周期性震蕩,在振動頻率較高時有引起母線過電壓故障的可能,通過允許變頻器的母線調(diào)節(jié)功能,使變頻器會基于直流母線電壓自動調(diào)整輸出頻率,監(jiān)測到母線電壓瞬時升高時變頻器會適當增加輸出頻率以減小引起母線電壓升高的再生能量,這樣做降低了出現(xiàn)變頻器過壓故障的可能性。
[連鑄設(shè)備]拉矯機
拉矯機
在連鑄工藝中,連鑄機拉坯輥速度控制是連鑄機的三大關(guān)鍵技術(shù)之一,拉坯速度控制水平直接影響連鑄坯的產(chǎn)量和質(zhì)量,而拉坯輥電機驅(qū)動裝置的性能又在其中發(fā)揮著重要作用。交流電機變頻調(diào)速技術(shù)日益成熟,交流變頻驅(qū)動調(diào)速平穩(wěn),調(diào)速范圍寬,對機械沖擊低,交流電機維護量低,交流變頻調(diào)速已取代直流調(diào)速,完全能夠滿足拉坯輥速度控制的需要。4、5號連鑄機的拉矯機為五輥雙機架三驅(qū)動,上拉坯輥、下拉坯輥、矯直輥由三臺同型號電機共同驅(qū)動,完成引錠桿的上下傳送運行和連鑄坯牽引,三臺電機必須保持同步,與一般的同步要求不同的是要保證三個輥面的線速度相同,而不是三臺電機的轉(zhuǎn)速相同,以避免出現(xiàn)負載分配不均引起母線過壓、欠壓、過載故障。
三臺變頻器接受相同的速度指令,按照同一頻率運行,但由于三輥處于一個半徑8m的圓弧段的不同位置上,若要保持三個輥面的線速度相同,則三臺電機的轉(zhuǎn)速實際應(yīng)有輕微差別,加上三臺電機的參數(shù)不可能完全相同,這就造成了三臺電機同步的困難。如果打開母線調(diào)節(jié)功能,雖然可以在一定程度上避免由于不同步造成的母線電壓升高,但會造成電機轉(zhuǎn)速的不穩(wěn)定,從而使拉速值波動,進一步影響到結(jié)晶器鋼水液面和二冷配水的穩(wěn)定,甚至有造成事故的危險。為此,我們利用變頻器內(nèi)置的PI控制功能,使三臺電機構(gòu)成主從驅(qū)動系統(tǒng),即以上拉坯電機作為主驅(qū)動電機,工作在速度調(diào)節(jié)方式,下拉坯電機和矯直電機作為從動電機,工作在帶有速度修正的速度調(diào)節(jié)方式下,通過比較主從電機的力矩電流產(chǎn)生偏差信號,從而修正從動電機的速度。變頻器間的力矩電流信號傳送可以通過變頻器內(nèi)置的模擬量輸入、輸出通道來實現(xiàn),無需另外添加硬件。這種方法構(gòu)成的主從驅(qū)動系統(tǒng),結(jié)構(gòu)簡單,完全利用變頻器內(nèi)置功能實現(xiàn),可以連續(xù)自動完成速度修正,應(yīng)用在多輥傳動的拉矯機上效果非常理想。
拉矯機和結(jié)晶器振動裝置采用變頻器調(diào)速系統(tǒng),拉矯機變頻器的啟動、停止以及調(diào)速由PLC發(fā)送給拉矯機變頻器,拉矯機的實際速度FM經(jīng)光電隔離后再反饋給PLC,然后由PLC傳送給相應(yīng)儀表顯示實際值。結(jié)晶器振動采用同調(diào)方式,即振動頻率隨拉速變化而變化,即根據(jù)下面的公式,來控制結(jié)晶器振動頻率f:
計算出振動頻率f由PLC發(fā)送給結(jié)晶器振動變頻器,使結(jié)晶器的振動適應(yīng)于拉速變化,系統(tǒng)框圖如圖所示。
[連鑄設(shè)備]電磁攪拌器
電磁攪拌器 electromagnetic stirring, EMS:連續(xù)鑄鋼時,利用電磁力控制鋼液凝固過程,改善鑄坯質(zhì)量的工藝。也稱EMS技術(shù)。
電磁攪拌器(Electromagnetic stirring: EMS)的實質(zhì)是借助在鑄坯液相穴中感生的電磁力,強化鋼水的運動。具體地說,攪拌器激發(fā)的交變磁場滲透到鑄坯的鋼水內(nèi),就在其中感應(yīng)起電流,該感應(yīng)電流與當?shù)卮艌鱿嗷プ饔卯a(chǎn)生電磁力,電磁力是體積力,作用在鋼水體積元上,從而能推動鋼水運動。
電磁攪拌器的安裝位置和攪拌器模式
根據(jù)電磁攪拌器在鑄機冶金長度上的不同安裝位置大致有以下幾種模式
結(jié)晶器電磁攪拌:Mold Electromagnetic stirring: MEMS 攪拌器安裝在結(jié)晶器銅管外面 二冷區(qū)電磁攪拌:Strand Electromagnetic Stirring: SEMS 攪拌器安裝在鑄坯外面 凝固末端電磁攪拌:Final Electromagnetic stirring:FEMS 用于方坯連鑄 攪拌器安裝在鑄坯外面
電磁攪拌器的冶金效果
攪拌位置
冶金效果
適用鋼種
MEMS
增加等軸晶率
低合金鋼
減少表面和皮下的氣孔和針孔
彈簧鋼
減少表面和皮下的夾雜物
冷軋鋼
坯殼均勻化
中高碳鋼等
稍稍改善中心偏析
SEMS
擴大等軸晶率
不銹鋼
減少內(nèi)裂
改善中心偏析
工具鋼
減少中心疏松
FEMS
細化等軸晶
彈簧鋼
有效地改善中心偏析
軸承鋼
有效地改善中心縮孔和疏松
特殊高碳鋼
[連鑄工藝]火焰切割的工藝
厚度大于50mm的厚鋼板一般采用火焰切割,也叫氧氣切割。其工藝大體如下:
(1)根據(jù)切割鋼板的厚度安裝適當孔徑的割嘴;
(2)將氧氣和燃氣壓力調(diào)至規(guī)定值;
(3)用切割點火器點燃預(yù)熱焰,接著慢慢打開預(yù)熱氧氣閥,調(diào)節(jié)火焰白心長度,使火焰成中性焰,預(yù)熱起割點;
(4)在切割起點上只用預(yù)熱焰加熱,割嘴垂直于鋼板表面,火焰白心尖端距鋼板表面1.5~2.5mm;
(5)當起點達到燃燒溫度(輝紅色)時,打開切割氧氣閥,瞬間就可進行切割;
(6)在確認已割至鋼板下表面后,就沿著切割線以適當?shù)乃俣纫苿痈钭炖^續(xù)往前切割;
(7)切割終了時,先關(guān)閉切割氧氣閥,再關(guān)閉預(yù)熱焰的氧氣閥。
定尺切割
定尺方式有碰球定尺和非在線定尺切割:
(1)碰球定尺
即切割機定尺脈沖信號由定尺碰球發(fā)出,但由于鋼坯表面的氧化皮的導(dǎo)電率差,盡管碰到了碰球,但不一定接觸良好,為防止誤切,系統(tǒng)利用拉矯機速度信號進行積分運算來計算坯長,并與定尺信號進行比較,確保定尺信號的準確性。
(2)非在線定尺切割
利用專門的非在線式鑄坯長度測量裝置,根據(jù)熱坯熱輻射的原理,通過探頭鎖定鑄坯在導(dǎo)軌內(nèi)的區(qū)域,當鑄坯進入?yún)^(qū)域并占滿整個區(qū)域后發(fā)出定尺信號,然后再給出剪切命令。
氧氣切割的基本原理及過程。
氧氣切割是利用氣體火焰的熱能將工件切割處預(yù)熱到燃點后,噴出高速切割氧流,使金屬燃燒并放出熱量而實現(xiàn)切割的方法。氣割過程有三個階段:
⑴預(yù)熱 氣割開始時,利用氣體火焰(氧乙炔焰或氧丙烷焰)將工件待切割處預(yù)熱到該種金屬材料的燃燒溫度——燃點(對于碳鋼約為1100~1150℃)。
⑵燃燒 噴出高速切割氧流,使已達燃點的金屬在氧流中激烈燃燒,生成氧化物。
⑶吹渣 金屬燃燒生成的氧化物被氧流吹掉,形成切口,使金屬分離,完成切割過程。
氧氣切割的三條件:
金屬材料要進行氧氣切割應(yīng)滿足以下三個條件:
1)金屬燃燒生成氧化物的熔點應(yīng)低于金屬熔點,且流動性要好。
2)金屬的燃點應(yīng)比熔點低。
3)金屬在氧流中燃燒時能放出大量的熱量,且金屬本身的導(dǎo)熱性要低。
符合上述氣割條件的金屬有純鐵、低碳鋼、中碳鋼、低合金鋼以及鈦。其它常用的金屬材料如鑄鐵、不銹鋼、鋁和銅等由于不滿足此三條件,所以不能應(yīng)用氧氣切割,這些材料目前常用的切割方法是等離子弧切割。
[連鑄設(shè)備]冷卻噴嘴
連鑄二次冷卻的目的是對離開結(jié)晶器后的鑄坯進行連續(xù)冷卻 ,使之逐漸凝固 ,到切割機前完全凝固。凝固過程受鑄坯的導(dǎo)熱性、噴霧介質(zhì)的冷卻效果、以及鑄坯質(zhì)量等的限制。凝固過程應(yīng)控制鑄坯表面溫度在澆注方向均勻下降。所以連鑄坯二次冷卻噴嘴的冷態(tài)特性 ,對連鑄生產(chǎn)和保證連鑄坯質(zhì)量是非常重要的。對噴嘴生產(chǎn)廠家生產(chǎn)的噴嘴噴頭的材質(zhì) ,要求有足夠的強度 ,否則在運輸、安裝和檢修中一旦有磕碰、緊固等現(xiàn)象 ,會造成噴嘴的水流量、噴射角度和水流密度分布變化 ,對連鑄生產(chǎn)有不良影響。
冷卻噴嘴具有結(jié)構(gòu)簡單、噴霧均勻的特點,根據(jù)噴霧面積需要,可在集管上安裝許多噴嘴,當噴嘴均勻排列時,可保證噴霧的互相交叉,并略有重疊部分,使整個集管噴射分布均勻;主要適用于連鑄機、初軋和各種需要扁平噴霧冷卻的機械設(shè)備中。
連鑄二冷噴嘴的類型、噴霧方法對鑄坯冷卻的影響 ,各類噴嘴冷卻的優(yōu)缺點 ,以及環(huán)型噴嘴嘴頭的材質(zhì)在檢修中出現(xiàn)的問題。對包鋼引進大方坯和大圓坯的汽霧噴嘴和國產(chǎn)噴嘴的冷態(tài)特性進行測試研究 ,測試結(jié)果表明 ,國產(chǎn)噴嘴的水流密度分布在中心的左右 ,分布均勻 ,對大方坯和大圓坯的橫向均勻降溫有益 ,但是國產(chǎn)噴嘴的噴射角度在測試的五種噴嘴中 ,有四種噴嘴符合國家黑色冶金對噴嘴噴射角度的要求 ,只有D40 197-1噴嘴在高壓測試時超國家要求的 +4° ,有少量國產(chǎn)噴嘴在同壓力條件下的流量誤差在 1%~ 10 %之間。
[連鑄設(shè)備]火焰切割機
圖片:
厚度大于50mm的厚鋼板一般采用火焰切割,也叫氧氣切割。其工藝大體如下:
(1)根據(jù)切割鋼板的厚度安裝適當孔徑的割嘴;
(2)將氧氣和燃氣壓力調(diào)至規(guī)定值;
(3)用切割點火器點燃預(yù)熱焰,接著慢慢打開預(yù)熱氧氣閥,調(diào)節(jié)火焰白心長度,使火焰成中性焰,預(yù)熱起割點;
(4)在切割起點上只用預(yù)熱焰加熱,割嘴垂直于鋼板表面,火焰白心尖端距鋼板表面1.5~2.5mm;
(5)當起點達到燃燒溫度(輝紅色)時,打開切割氧氣閥,瞬間就可進行切割;
(6)在確認已割至鋼板下表面后,就沿著切割線以適當?shù)乃俣纫苿痈钭炖^續(xù)往前切割;
(7)切割終了時,先關(guān)閉切割氧氣閥,再關(guān)閉預(yù)熱焰的氧氣閥。
[連鑄設(shè)備]鋼包烘烤器
鋼包在新砌后和盛裝鋼水前一般都需要烘烤,用來烘烤鋼包的裝置就稱為鋼包烘烤器,又稱烤包器。
鋼包烘烤器有在線烘烤器和離線烘烤器兩大類,離線烘烤器有立式烘烤器和臥式烘烤器兩種,另外還有專門烘烤中間包的中間包烘烤器。