欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)[★]

      時(shí)間:2019-05-12 05:27:08下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)》。

      第一篇:初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

      初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

      一、圓的基本性質(zhì)

      1.圓的定義(兩種)

      2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

      3.“三點(diǎn)定圓”定理

      4.垂徑定理及其推論

      5.“等對(duì)等”定理及其推論

      5. 與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)

      ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)

      ⑶弦切角定義(弦切角定理)

      二、直線和圓的位置關(guān)系

      1.三種位置及判定與性質(zhì):

      2.切線的性質(zhì)(重點(diǎn))

      3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴?⑵?

      4.切線長(zhǎng)定理

      三、圓換圓的位置關(guān)系

      1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)

      2.相切(交)兩圓連心線的性質(zhì)定理

      3.兩圓的公切線:⑴定義⑵性質(zhì)

      四、與圓有關(guān)的比例線段

      1.相交弦定理

      2.切割線定理

      五、與和正多邊形

      1.圓的內(nèi)接、外切多邊形(三角形、四邊形)

      2.三角形的外接圓、內(nèi)切圓及性質(zhì)

      3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)

      4.正多邊形及計(jì)算

      中心角:

      內(nèi)角的一半:(右圖)

      (解Rt△OAM可求出相關(guān)元素,、等)

      六、一組計(jì)算公式

      1.圓周長(zhǎng)公式

      2.圓面積公式

      3.扇形面積公式

      4.弧長(zhǎng)公式

      5.弓形面積的計(jì)算方法

      6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算

      七、點(diǎn)的軌跡

      六條基本軌跡

      八、有關(guān)作圖

      1.作三角形的外接圓、內(nèi)切圓

      2.平分已知弧

      3.作已知兩線段的比例中項(xiàng)

      4.等分圓周:

      4、8;

      6、3等分

      第二篇:初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

      九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

      (為重中之重)

      第一章

      二次根式

      二次根式:形如()的式子為二次根式;

      性質(zhì):()是一個(gè)非負(fù)數(shù);

      。

      二次根式的乘除:

      。

      二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。

      二次根式的混合運(yùn)算

      第二章

      一元二次方程

      一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。

      一元二次方程的解法

      配方法:將方程的一邊配成完全平方式,然后兩邊開方;

      公式法:(其中當(dāng)△=>0時(shí),方程有兩個(gè)不同的實(shí)數(shù)根:;當(dāng)△==0時(shí)方程有兩個(gè)相等的實(shí)數(shù)根:;當(dāng)△=<0時(shí),方程無實(shí)數(shù)根)

      因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。

      一元二次方程在實(shí)際問題中的應(yīng)用

      韋達(dá)定理:設(shè)是方程的兩個(gè)根,那么有

      第三章

      旋轉(zhuǎn)

      圖形的旋轉(zhuǎn)

      旋轉(zhuǎn):把一個(gè)平面圖形繞著平面內(nèi)某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度,就叫做圖形的旋轉(zhuǎn)。

      性質(zhì):①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

      ②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角

      ③旋轉(zhuǎn)前后的圖形全等。

      會(huì)畫出一個(gè)圖形順時(shí)針或逆時(shí)針旋轉(zhuǎn)30°、60°、90°后的圖形。

      中心對(duì)稱:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形中心對(duì)稱。

      中心對(duì)稱圖形:把一個(gè)圖形繞著某個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。

      會(huì)畫出一個(gè)圖形關(guān)于原點(diǎn)對(duì)稱得圖形,也就是中心對(duì)稱圖形。

      關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)

      已知點(diǎn)P的坐標(biāo)是(x,y):關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(-x,-y)

      關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(x,-y)

      關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是(-x,y)

      第四章

      圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

      垂直于弦的直徑

      圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;

      垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條?。?/p>

      平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。

      弧、弦、圓心角

      在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。

      圓周角

      在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;

      半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。

      點(diǎn)和圓的位置關(guān)系

      點(diǎn)在圓外

      點(diǎn)在圓上

      d=r

      點(diǎn)在圓內(nèi)

      d

      定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。

      三角形的外接圓:經(jīng)過三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點(diǎn),叫做三角形的外心。

      6直線和圓的位置關(guān)系

      相交

      d

      相切

      d=r

      相離

      d>r

      切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑;

      切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;

      切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。

      三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。

      圓和圓的位置關(guān)系

      外離

      d>R+r

      外切

      d=R+r

      相交

      R-r

      內(nèi)切

      d=R-r

      內(nèi)含

      d

      正多邊形和圓

      正多邊形的中心:外接圓的圓心

      正多邊形的半徑:外接圓的半徑

      正多邊形的中心角:沒邊所對(duì)的圓心角

      正多邊形的邊心距:中心到一邊的距離

      弧長(zhǎng)和扇形面積

      弧長(zhǎng)

      扇形面積:

      圓錐的側(cè)面積和全面積

      側(cè)面積:

      全面積

      (附加)相交弦定理、切割線定理

      第五章

      概率初步

      概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。

      用列舉法求概率

      一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=

      用頻率去估計(jì)概率

      第三篇:西點(diǎn)課業(yè)--初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)

      初三數(shù)學(xué)知識(shí)點(diǎn) 第一章 二次根式

      二次根式:形如a(a?0)的式子為二次根式; 性質(zhì):a(a?0)是一個(gè)非負(fù)數(shù); ?a??a?a?0?; a2?a?a?0?。

      二次根式的乘除: a?b?ab?a?0,b?0?;

      ab?a?a?0,b?0?。b 3 二次根式的加減:二次根式加減時(shí),先將二次根式化為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。海倫-秦九韶公式:S?p(p?a)(p?b)(p?c),S是三角形的面積,p為p?a?b?c,也稱半周長(zhǎng)。2第二章 一元二次方程 一元二次方程:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。一元二次方程的解法

      配方法:將方程的一邊配成完全平方式,然后兩邊開方;

      ?b?b2?4ac 公式法:x?

      2a 因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。3 一元二次方程在實(shí)際問題中的應(yīng)用 韋達(dá)定理:設(shè)x1,x2是方程ax2?bx?c?0的兩個(gè)根,那么有 x1?x2??,x1?x2? 第三章 旋轉(zhuǎn) 1 圖形的旋轉(zhuǎn)

      旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換 性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

      對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角

      旋轉(zhuǎn)前后的圖形全等。

      中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;

      中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;

      關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)

      第四章 圓

      圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直于弦的直徑

      圓是軸對(duì)稱圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;

      垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條??;

      平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。3 弧、弦、圓心角

      在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所

      baca對(duì)的弦也相等。

      圓周角

      在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;

      半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。

      點(diǎn)和圓的位置關(guān)系

      點(diǎn)在 d?r

      點(diǎn)在圓上 d=r 點(diǎn)在圓內(nèi) d

      三角形的外接圓:經(jīng)過三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點(diǎn),叫做三角形的外心。

      6直線和圓的位置關(guān)系

      相交 dr 切線的性質(zhì)定理:圓的切線垂直于過切點(diǎn)的半徑;

      切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;

      切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。

      三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。

      圓和圓的位置關(guān)系

      外離 d>R+r 外切 d=R+r 相交 R-r

      正多邊形的中心:外接圓的圓心

      正多邊形的半徑:外接圓的半徑

      正多邊形的中心角:沒邊所對(duì)的圓心角

      正多邊形的邊心距:中心到一邊的距離 9 弧長(zhǎng)和扇形面積

      弧長(zhǎng) l?n?r 180n?r2 扇形面積:S?

      36010 圓錐的側(cè)面積和全面積

      側(cè)面積:

      全面積(附加)相交弦定理、切割線定理 第五章 概率初步

      概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。用列舉法求概率

      一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=m nm穩(wěn)定在n 3 用頻率去估計(jì)概率

      第四篇:初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)和歸納

      小編整理了關(guān)于初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)和歸納,包括三角形的定義、實(shí)數(shù)的概念運(yùn)算、圓的知識(shí)點(diǎn)、代數(shù)、函數(shù)等有關(guān)知識(shí)點(diǎn),初三數(shù)學(xué)知識(shí)點(diǎn)以供同學(xué)們參考和學(xué)習(xí)!

      初三數(shù)學(xué)知識(shí)點(diǎn) 第一章 實(shí)數(shù)

      ★重點(diǎn)★ 實(shí)數(shù)的有關(guān)概念及性質(zhì),實(shí)數(shù)的運(yùn)算

      ☆內(nèi)容提要☆

      一、重要概念

      1.數(shù)的分類及概念

      數(shù)系表:

      說明:“分類”的原則:1)相稱(不重、不漏)

      2)有標(biāo)準(zhǔn)

      2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)

      常見的非負(fù)數(shù)有:

      性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

      3.倒數(shù): ①定義及表示法

      ②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時(shí),1/a<1;D.積為1。

      4.相反數(shù): ①定義及表示法

      ②性質(zhì):A.a≠0時(shí),a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

      5.數(shù)軸:①定義(“三要素”)

      ②作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

      6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

      定義及表示:

      奇數(shù):2n-1

      偶數(shù):2n(n為自然數(shù))

      7.絕對(duì)值:①定義(兩種):

      代數(shù)定義:

      幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。

      ②│a│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。

      二、實(shí)數(shù)的運(yùn)算

      1.運(yùn)算法則(加、減、乘、除、乘方、開方)

      2.運(yùn)算定律(五個(gè)—加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]

      分配律)

      3.運(yùn)算順序:A.高級(jí)運(yùn)算到低級(jí)運(yùn)算;B.(同級(jí)運(yùn)算)從“左”

      到“右”(如5÷ 35);C.(有括號(hào)時(shí))由“小”到“中”到“大”。

      三、應(yīng)用舉例(略)

      附:典型例題

      1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│

      =b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號(hào)。

      初三數(shù)學(xué)知識(shí)點(diǎn) 第二章 代數(shù)式

      ★重點(diǎn)★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算

      ☆內(nèi)容提要☆

      一、重要概念

      分類:

      1.代數(shù)式與有理式

      用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)

      的一個(gè)數(shù)或字母也是代數(shù)式。

      整式和分式統(tǒng)稱為有理式。

      2.整式和分式

      含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。

      沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。

      有除法運(yùn)算并且除式中含有字母的有理式叫做分式。

      3.單項(xiàng)式與多項(xiàng)式

      沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積—包括單獨(dú)的一個(gè)數(shù)或字母)

      幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。

      說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類別時(shí),是從外形來看。如,=x, =│x│等。

      4.系數(shù)與指數(shù)

      區(qū)別與聯(lián)系:①?gòu)奈恢蒙峡?②從表示的意義上看

      5.同類項(xiàng)及其合并

      條件:①字母相同;②相同字母的指數(shù)相同

      合并依據(jù):乘法分配律

      6.根式

      表示方根的代數(shù)式叫做根式。

      含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無理式。

      注意:①?gòu)耐庑紊吓袛?②區(qū)別:、是根式,但不是無理式(是無理數(shù))。

      7.算術(shù)平方根

      ⑴正數(shù)a的正的平方根([a≥0—與“平方根”的區(qū)別]);

      ⑵算術(shù)平方根與絕對(duì)值

      ① 聯(lián)系:都是非負(fù)數(shù),=│a│

      ②區(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。

      8.同類二次根式、最簡(jiǎn)二次根式、分母有理化

      化為最簡(jiǎn)二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

      滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

      把分母中的根號(hào)劃去叫做分母有理化。

      9.指數(shù)

      ⑴(—冪,乘方運(yùn)算)

      ① a>0時(shí),>0;②a<0時(shí),>0(n是偶數(shù)),<0(n是奇數(shù))

      ⑵零指數(shù): =1(a≠0)

      負(fù)整指數(shù): =1/(a≠0,p是正整數(shù))

      二、運(yùn)算定律、性質(zhì)、法則

      1.分式的加、減、乘、除、乘方、開方法則

      2.分式的性質(zhì)

      ⑴基本性質(zhì): =(m≠0)

      ⑵符號(hào)法則:

      ⑶繁分式:①定義;②化簡(jiǎn)方法(兩種)

      3.整式運(yùn)算法則(去括號(hào)、添括號(hào)法則)

      4.冪的運(yùn)算性質(zhì):① 2 =;② ÷ =;③ =;④ =;⑤

      技巧:

      5.乘法法則:⑴單3單;⑵單3多;⑶多3多。

      6.乘法公式:(正、逆用)

      (a+b)(a-b)=

      (a±b)=

      7.除法法則:⑴單÷單;⑵多÷單。

      8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。

      9.算術(shù)根的性質(zhì): =;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)

      10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A.;B.;C..11.科學(xué)記數(shù)法:(1≤a<10,n是整數(shù)=

      三、應(yīng)用舉例(略)

      四、數(shù)式綜合運(yùn)算(略)初三數(shù)學(xué)知識(shí)點(diǎn):第三章 統(tǒng)計(jì)初步

      ★重點(diǎn)★

      ☆ 內(nèi)容提要☆

      一、重要概念

      1.總體:考察對(duì)象的全體。

      2.個(gè)體:總體中每一個(gè)考察對(duì)象。

      3.樣本:從總體中抽出的一部分個(gè)體。

      4.樣本容量:樣本中個(gè)體的數(shù)目。

      5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

      6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù))

      二、計(jì)算方法

      1.樣本平均數(shù):⑴;⑵若,?,,則(a—常數(shù),,?,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(shì)(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。

      2.樣本方差:⑴;⑵若 , ,?, ,則(a—接近、、?、的平均數(shù)的較“整”的常數(shù));若、、?、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。

      3.樣本標(biāo)準(zhǔn)差:

      三、應(yīng)用舉例(略)

      初三數(shù)學(xué)知識(shí)點(diǎn):第四章 直線形

      ★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

      ☆ 內(nèi)容提要☆

      一、直線、相交線、平行線

      1.線段、射線、直線三者的區(qū)別與聯(lián)系

      從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

      2.線段的中點(diǎn)及表示

      3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

      4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

      5.角(平角、周角、直角、銳角、鈍角)

      6.互為余角、互為補(bǔ)角及表示方法

      7.角的平分線及其表示

      8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

      9.對(duì)頂角及性質(zhì)

      10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

      11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

      12.定義、命題、命題的組成 13.公理、定理

      14.逆命題二、三角形

      分類:⑴按邊分;

      ⑵按角分

      1.定義(包括內(nèi)、外角)

      2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段

      討論:①定義②33線的交點(diǎn)—三角形的3心③性質(zhì)

      ① 高線②中線③角平分線④中垂線⑤中位線

      ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

      4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

      5.全等三角形

      ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

      ⑵特殊三角形全等的判定:①一般方法②專用方法

      6.三角形的面積

      ⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

      7.重要輔助線

      ⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

      8.證明方法

      ⑴直接證法:綜合法、分析法

      ⑵間接證法—反證法:①反設(shè)②歸謬③結(jié)論

      ⑶證線段相等、角相等常通過證三角形全等

      ⑷證線段倍分關(guān)系:加倍法、折半法

      ⑸證線段和差關(guān)系:延結(jié)法、截余法

      ⑹證面積關(guān)系:將面積表示出來三、四邊形

      分類表:

      1.一般性質(zhì)(角)

      ⑴內(nèi)角和:360°

      ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

      推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。

      推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。

      ⑶外角和:360°

      2.特殊四邊形

      ⑴研究它們的一般方法:

      ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

      ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

      ┗→菱形——↑

      ⑷對(duì)角線的紐帶作用:

      3.對(duì)稱圖形

      ⑴軸對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))

      4.有關(guān)定理:①平行線等分線段定理及其推論1、2

      ②三角形、梯形的中位線定理

      ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

      5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中常“平移一腰”、“平移對(duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。

      6.作圖:任意等分線段。

      四、應(yīng)用舉例(略)初三數(shù)學(xué)知識(shí)點(diǎn) 第五章 方程(組)

      ★重點(diǎn)★一元一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題)

      ☆ 內(nèi)容提要☆

      一、基本概念

      1.方程、方程的解(根)、方程組的解、解方程(組)

      2.分類:

      二、解方程的依據(jù)—等式性質(zhì)

      1.a=b←→a+c=b+c

      2.a=b←→ac=bc(c≠0)

      三、解法

      1.一元一次方程的解法:去分母→去括號(hào)→移項(xiàng)→合并同類項(xiàng)→

      系數(shù)化成1→解。

      2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

      ②加減法四、一元二次方程

      1.定義及一般形式:

      2.解法:⑴直接開平方法(注意特征)

      ⑵配方法(注意步驟—推倒求根公式)

      ⑶公式法:

      ⑷因式分解法(特征:左邊=0)

      3.根的判別式:

      4.根與系數(shù)頂?shù)年P(guān)系:

      逆定理:若,則以 為根的一元二次方程是:。

      5.常用等式:

      五、可化為一元二次方程的方程

      1.分式方程

      ⑴定義

      ⑵基本思想:

      ⑶基本解法:①去分母法②換元法(如,)

      ⑷驗(yàn)根及方法

      2.無理方程

      ⑴定義

      ⑵基本思想:

      ⑶基本解法:①乘方法(注意技巧!)②換元法(例,)⑷驗(yàn)根及方法

      3.簡(jiǎn)單的二元二次方程組

      由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。

      初三數(shù)學(xué)知識(shí)點(diǎn)

      六、列方程(組)解應(yīng)用題

      一概述

      列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:

      ⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

      ⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

      ⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。

      ⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。

      ⑸解方程及檢驗(yàn)。

      ⑹答案。

      綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

      二常用的相等關(guān)系

      1.行程問題(勻速運(yùn)動(dòng))

      基本關(guān)系:s=vt

      ⑴相遇問題(同時(shí)出發(fā)):

      + =;

      ⑵追及問題(同時(shí)出發(fā)):

      若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則

      ⑶水中航行:;

      2.配料問題:溶質(zhì)=溶液3濃度

      溶液=溶質(zhì)+溶劑

      3.增長(zhǎng)率問題:

      4.工程問題:基本關(guān)系:工作量=工作效率3工作時(shí)間(常把工作量看著單位“1”)。

      5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

      三注意語言與解析式的互化

      如,“多”、“少”、“增加了”、“增加為(到)”、“同時(shí)”、“擴(kuò)大為(到)”、“擴(kuò)大了”、??

      又如,一個(gè)三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c,則這個(gè)三位數(shù)為:100a+10b+c,而不是abc。

      四注意從語言敘述中寫出相等關(guān)系。

      如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

      如,“小時(shí)”“分鐘”的換算;s、v、t單位的一致等。

      七、應(yīng)用舉例(略)

      初三數(shù)學(xué)知識(shí)點(diǎn):第六章 一元一次不等式(組)

      ★重點(diǎn)★一元一次不等式的性質(zhì)、解法

      ☆ 內(nèi)容提要☆

      1.定義:a>b、a

      2.一元一次不等式:ax>b、ax

      3.一元一次不等式組:

      4.不等式的性質(zhì):⑴a>b←→a+c>b+c

      ⑵a>b←→ac>bc(c>0)

      ⑶a>b←→ac

      ⑷(傳遞性)a>b,b>c→a>c

      ⑸a>b,c>d→a+c>b+d.5.一元一次不等式的解、解一元一次不等式

      6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)

      7.應(yīng)用舉例(略)初三數(shù)學(xué)知識(shí)點(diǎn) 第七章 相似形

      ★重點(diǎn)★相似三角形的判定和性質(zhì)

      ☆內(nèi)容提要☆

      一、本章的兩套定理

      第一套(比例的有關(guān)性質(zhì)):

      涉及概念:①第四比例項(xiàng)②比例中項(xiàng)③比的前項(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)④黃金分割等。

      第二套:

      注意:①定理中“對(duì)應(yīng)”二字的含義;

      ②平行→相似(比例線段)→平行。

      二、相似三角形性質(zhì)

      1.對(duì)應(yīng)線段?;2.對(duì)應(yīng)周長(zhǎng)?;3.對(duì)應(yīng)面積?。

      三、相關(guān)作圖

      ①作第四比例項(xiàng);②作比例中項(xiàng)。

      四、證(解)題規(guī)律、輔助線

      1.“等積”變“比例”,“比例”找“相似”。

      2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴

      3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。

      4.對(duì)比例問題,常用處理方法是將“一份”看著k;對(duì)于等比問題,常用處理辦法是設(shè)“公比”為k。

      5.對(duì)于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。

      五、應(yīng)用舉例(略)

      初三數(shù)學(xué)知識(shí)點(diǎn) 第八章 函數(shù)及其圖象

      ★重點(diǎn)★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。

      ☆ 內(nèi)容提要☆

      一、平面直角坐標(biāo)系

      1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)

      2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)

      3.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn)

      4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系

      二、函數(shù)

      1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

      2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問題有

      意義。

      3.畫函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。

      三、幾種特殊函數(shù)

      (定義→圖象→性質(zhì))

      1.正比例函數(shù)

      ⑴定義:y=kx(k≠0)或y/x=k。

      ⑵圖象:直線(過原點(diǎn))

      ⑶性質(zhì):①k>0,?②k<0,?

      2.一次函數(shù)

      ⑴定義:y=kx+b(k≠0)

      ⑵圖象:直線過點(diǎn)(0,b)—與y軸的交點(diǎn)和(-b/k,0)—與x軸的交點(diǎn)。

      ⑶性質(zhì):①k>0,?②k<0,?

      ⑷圖象的四種情況:

      3.二次函數(shù)

      ⑴定義:

      特殊地,都是二次函數(shù)。

      ⑵圖象:拋物線(用描點(diǎn)法畫出:先確定頂點(diǎn)、對(duì)稱軸、開口方向,再對(duì)稱地描點(diǎn))。用配方法變?yōu)?,則頂點(diǎn)為(h,k);對(duì)稱軸為直線x=h;a>0時(shí),開口向上;a<0時(shí),開口向下。

      ⑶性質(zhì):a>0時(shí),在對(duì)稱軸左側(cè)?,右側(cè)?;a<0時(shí),在對(duì)稱軸左側(cè)?,右側(cè)?。

      4.反比例函數(shù)

      ⑴定義: 或xy=k(k≠0)。

      ⑵圖象:雙曲線(兩支)—用描點(diǎn)法畫出。

      ⑶性質(zhì):①k>0時(shí),圖象位于?,y隨x?;②k<0時(shí),圖象位于?,y隨x?;③兩支曲線無限接近于坐標(biāo)軸但永遠(yuǎn)不能到達(dá)坐標(biāo)軸。

      四、重要解題方法

      1.用待定系數(shù)法求解析式(列方程[組]求解)。對(duì)求二次函數(shù)的解析式,要合理選用一般式或頂點(diǎn)式,并應(yīng)充分運(yùn)用拋物線關(guān)于對(duì)稱軸對(duì)稱的特點(diǎn),尋找新的點(diǎn)的坐標(biāo)。如下圖:

      2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號(hào)。

      六、應(yīng)用舉例(略)

      初三數(shù)學(xué)知識(shí)點(diǎn) 第九章 解直角三角形

      ★重點(diǎn)★解直角三角形

      ☆ 內(nèi)容提要☆ 一、三角函數(shù)

      1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函數(shù)值:

      0° 30° 45° 60° 90°

      sinα

      cosα

      tgα /

      ctgα /

      3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;?

      4.三角函數(shù)值隨角度變化的關(guān)系

      5.查三角函數(shù)表

      二、解直角三角形

      1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。

      2.依據(jù):①邊的關(guān)系:

      ②角的關(guān)系:A+B=90°

      ③邊角關(guān)系:三角函數(shù)的定義。

      注意:盡量避免使用中間數(shù)據(jù)和除法。

      三、對(duì)實(shí)際問題的處理

      1.俯、仰角: 2.方位角、象限角: 3.坡度:

      4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。

      四、應(yīng)用舉例(略)

      初三數(shù)學(xué)知識(shí)點(diǎn) 第十章 圓

      ★重點(diǎn)★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。

      ☆ 內(nèi)容提要☆

      一、圓的基本性質(zhì)

      1.圓的定義(兩種)

      2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

      3.“三點(diǎn)定圓”定理

      4.垂徑定理及其推論

      5.“等對(duì)等”定理及其推論

      5.與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)

      ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)

      ⑶弦切角定義(弦切角定理)

      二、直線和圓的位置關(guān)系

      1.三種位置及判定與性質(zhì):

      2.切線的性質(zhì)(重點(diǎn))

      3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴?⑵?

      4.切線長(zhǎng)定理

      三、圓換圓的位置關(guān)系

      1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)

      2.相切(交)兩圓連心線的性質(zhì)定理

      3.兩圓的公切線:⑴定義⑵性質(zhì)

      四、與圓有關(guān)的比例線段

      1.相交弦定理

      2.切割線定理

      五、與和正多邊形

      1.圓的內(nèi)接、外切多邊形(三角形、四邊形)

      2.三角形的外接圓、內(nèi)切圓及性質(zhì)

      3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)

      4.正多邊形及計(jì)算

      中心角:

      內(nèi)角的一半:(右圖)

      (解Rt△OAM可求出相關(guān)元素,、等)

      六、一組計(jì)算公式

      1.圓周長(zhǎng)公式

      2.圓面積公式

      3.扇形面積公式

      4.弧長(zhǎng)公式

      5.弓形面積的計(jì)算方法

      6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算

      七、點(diǎn)的軌跡

      六條基本軌跡

      八、有關(guān)作圖

      1.作三角形的外接圓、內(nèi)切圓

      2.平分已知弧

      3.作已知兩線段的比例中項(xiàng)

      4.等分圓周:

      4、8;

      6、3等分

      九、基本圖形

      十、重要輔助線

      1.作半徑

      2.見弦往往作弦心距

      3.見直徑往往作直徑上的圓周角

      4.切點(diǎn)圓心莫忘連

      5.兩圓相切公切線(連心線)

      6.兩圓相交公共弦

      第五篇:初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版

      初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版有哪些?初中數(shù)學(xué)學(xué)習(xí)是對(duì)學(xué)生邏輯計(jì)算能力的培養(yǎng),學(xué)好初三數(shù)學(xué)的關(guān)鍵就在于要適時(shí)適量地進(jìn)行總結(jié)歸類,一起來看看初三數(shù)學(xué)知識(shí)點(diǎn)歸納人教版,歡迎查閱!

      初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      一、直線、相交線、平行線

      1.線段、射線、直線三者的區(qū)別與聯(lián)系

      從圖形、表示法、界限、端點(diǎn)個(gè)數(shù)、基本性質(zhì)等方面加以分析。

      2.線段的中點(diǎn)及表示

      3.直線、線段的基本性質(zhì)(用線段的基本性質(zhì)論證三角形兩邊之和大于第三邊)

      4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

      5.角(平角、周角、直角、銳角、鈍角)

      6.互為余角、互為補(bǔ)角及表示方法

      7.角的平分線及其表示

      8.垂線及基本性質(zhì)(利用它證明直角三角形中斜邊大于直角邊)

      9.對(duì)頂角及性質(zhì)

      10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

      11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

      12.定義、命題、命題的組成13.公理、定理

      14.逆命題二、三角形

      分類:⑴按邊分;

      ⑵按角分

      1.定義(包括內(nèi)、外角)

      2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段

      討論:①定義②線的交點(diǎn)-三角形的心③性質(zhì)

      ① 高線②中線③角平分線④中垂線⑤中位線

      ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

      4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

      5.全等三角形

      ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

      ⑵特殊三角形全等的判定:①一般方法②專用方法

      6.三角形的面積

      ⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

      7.重要輔助線

      ⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

      8.證明方法

      ⑴直接證法:綜合法、分析法

      ⑵間接證法-反證法:①反設(shè)②歸謬③結(jié)論

      ⑶證線段相等、角相等常通過證三角形全等

      ⑷證線段倍分關(guān)系:加倍法、折半法

      ⑸證線段和差關(guān)系:延結(jié)法、截余法

      ⑹證面積關(guān)系:將面積表示出來三、四邊形

      分類表:

      1.一般性質(zhì)(角)

      ⑴內(nèi)角和:360

      ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

      推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。

      推論2:順次連結(jié)對(duì)角線互相垂直的`四邊形各邊中點(diǎn)得矩形。

      ⑶外角和:360

      2.特殊四邊形

      ⑴研究它們的一般方法:

      ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

      ⑶判定步驟:四邊形平行四邊形矩形正方形

      ⑷對(duì)角線的紐帶作用:

      3.對(duì)稱圖形

      ⑴軸對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))

      4.有關(guān)定理:①平行線等分線段定理及其推論1、2

      ②三角形、梯形的中位線定理

      ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

      5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中常平移一腰、平移對(duì)角線、作高、連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交轉(zhuǎn)化為三角形。

      6.作圖:任意等分線段。

      初三數(shù)學(xué)知識(shí)點(diǎn)歸納大全

      第四章直線形

      ★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

      ☆內(nèi)容提要☆

      一、直線、相交線、平行線

      1.線段、射線、直線三者的區(qū)別與聯(lián)系

      從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

      2.線段的中點(diǎn)及表示

      3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

      4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)

      5.角(平角、周角、直角、銳角、鈍角)

      6.互為余角、互為補(bǔ)角及表示方法

      7.角的平分線及其表示

      8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

      9.對(duì)頂角及性質(zhì)

      10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

      11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

      12.定義、命題、命題的組成13.公理、定理

      14.逆命題二、三角形

      分類:⑴按邊分;

      ⑵按角分

      1.定義(包括內(nèi)、外角)

      2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段

      討論:①定義②__線的交點(diǎn)―三角形的×心③性質(zhì)

      ①高線②中線③角平分線④中垂線⑤中位線

      ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

      4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

      5.全等三角形

      ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

      ⑵特殊三角形全等的判定:①一般方法②專用方法

      6.三角形的面積

      ⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

      7.重要輔助線

      ⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

      8.證明方法

      ⑴直接證法:綜合法、分析法

      ⑵間接證法―反證法:①反設(shè)②歸謬③結(jié)論

      ⑶證線段相等、角相等常通過證三角形全等

      ⑷證線段倍分關(guān)系:加倍法、折半法

      ⑸證線段和差關(guān)系:延結(jié)法、截余法

      ⑹證面積關(guān)系:將面積表示出來三、四邊形

      分類表:

      1.一般性質(zhì)(角)

      ⑴內(nèi)角和:360°

      ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

      推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。

      推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。

      ⑶外角和:360°

      2.特殊四邊形

      ⑴研究它們的一般方法:

      ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

      ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

      ┗→菱形――↑

      ⑷對(duì)角線的紐帶作用:

      3.對(duì)稱圖形

      ⑴軸對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))

      4.有關(guān)定理:①平行線等分線段定理及其推論1、2

      ②三角形、梯形的中位線定理

      ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

      5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中?!捌揭埔谎薄ⅰ捌揭茖?duì)角線”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。

      6.作圖:任意等分線段。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

      代數(shù)部分:有理數(shù)、無理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

      幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

      1、實(shí)數(shù)的分類

      有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù)。如:-3,0.231,0.737373...無理數(shù):無限不環(huán)循小數(shù)叫做無理數(shù)如:π,-,0.1010010001...(兩個(gè)1之間依次多1個(gè)0)。

      實(shí)數(shù):有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。

      2、無理數(shù)

      在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,它包含兩層意思:一是無限小數(shù);二是不循環(huán).二者缺一不可.歸納起來有四類:

      (1)開方開不盡的數(shù),如等;

      (2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;

      (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001...等;

      (4)某些三角函數(shù),如sin60o等。

      注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無理數(shù)),應(yīng)遵循:一化簡(jiǎn),二辨析,三判斷.要注意:“神似”或“形似”都不能作為判斷的標(biāo)準(zhǔn).3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)

      常見的非負(fù)數(shù)有:

      性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。

      4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

      解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。

      ①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸(“三要素”)。

      ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

      ③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。

      作用:A.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對(duì)值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。

      5、相反數(shù)

      實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

      即:(1)實(shí)數(shù)的相反數(shù)是。

      下載初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)[★]word格式文檔
      下載初三數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)[★].doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        初三上冊(cè)數(shù)學(xué)《一元二次方程》知識(shí)點(diǎn)復(fù)習(xí)資料[大全5篇]

        習(xí)是一架保持平衡的天平,一邊是付出,一邊是收獲,少付出少收獲,多付出多收獲,那么你們知道關(guān)于初三上冊(cè)數(shù)學(xué)《一元二次方程》知識(shí)點(diǎn)復(fù)習(xí)資料內(nèi)容還有哪些呢?下面是小編為大家準(zhǔn)備......

        初三上冊(cè)化學(xué)知識(shí)點(diǎn)總結(jié)

        專題2初三化學(xué)上冊(cè)知識(shí)點(diǎn) 潤(rùn)禾教育 2011.11.23 (一)知識(shí)點(diǎn)概述 1. 化學(xué)是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實(shí)驗(yàn)為基礎(chǔ)自然科學(xué)。 2. 化學(xué)變化和物理變化的根......

        化學(xué)初三上冊(cè)知識(shí)點(diǎn)總結(jié)大全

        知識(shí)是智慧的火花,能使奮斗者升起才華的烈焰;知識(shí)是春耕的犁鏵,一旦手入生活的荒徑,就能使田地地芳草萋萋,碩果累累。下面小編給大家分享一些化學(xué)初三上冊(cè)知識(shí)總結(jié),希望能夠幫助......

        初三政治上冊(cè)知識(shí)點(diǎn)總結(jié).

        初三政治知識(shí)點(diǎn)歸納 九年級(jí) (初三 政治知識(shí)點(diǎn):第一單元知識(shí)點(diǎn) 1、什么是公平? 公平意味著參與社會(huì)合作的每一個(gè)人既要承擔(dān)應(yīng)分擔(dān)的責(zé)任,又能得到應(yīng)得到的利益, 實(shí)現(xiàn)權(quán)利和義......

        初三語文知識(shí)點(diǎn)上冊(cè)(五篇模版)

        知識(shí)改變命運(yùn),知識(shí)是人類進(jìn)步的階梯,知識(shí)是智慧的源泉,知識(shí)可以使人明智,陶冶人們的靈魂。下面給大家分享一些關(guān)于初三語文知識(shí)點(diǎn)上冊(cè),希望對(duì)大家有所幫助。初三語文知識(shí)點(diǎn)1第一......

        初三上冊(cè)化學(xué)知識(shí)點(diǎn)總結(jié)

        專題2初三化學(xué)上冊(cè)知識(shí)點(diǎn) 潤(rùn)禾教育 2011.11.23 (一)知識(shí)點(diǎn)概述 1. 化學(xué)是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實(shí)驗(yàn)為基礎(chǔ)自然科學(xué)。 2. 化學(xué)變化和物理變化的根本......

        初三(九年級(jí))下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納

        初三(九年級(jí))下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 九年級(jí)下冊(cè)知識(shí)點(diǎn)歸納包括二次函數(shù)、相似、銳角三角形、投影與視圖共四章內(nèi)容, 主要總結(jié)了這幾個(gè)單元的重點(diǎn)和難點(diǎn)的內(nèi)容,是初三同學(xué)們和中考考......

        初三數(shù)學(xué)旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)

        第23章旋轉(zhuǎn)知識(shí)點(diǎn)總結(jié)一、旋轉(zhuǎn)1、定義把一個(gè)圖形繞某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的叫做旋轉(zhuǎn),其中O叫做,叫做旋轉(zhuǎn)角。2、性質(zhì)(1)對(duì)應(yīng)點(diǎn)到的距離相等。(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于......