欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      西點課業(yè)--初三數(shù)學上冊知識點總結(jié)

      時間:2019-05-12 05:30:37下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《西點課業(yè)--初三數(shù)學上冊知識點總結(jié)》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《西點課業(yè)--初三數(shù)學上冊知識點總結(jié)》。

      第一篇:西點課業(yè)--初三數(shù)學上冊知識點總結(jié)

      初三數(shù)學知識點 第一章 二次根式

      二次根式:形如a(a?0)的式子為二次根式; 性質(zhì):a(a?0)是一個非負數(shù); ?a??a?a?0?; a2?a?a?0?。

      二次根式的乘除: a?b?ab?a?0,b?0?;

      ab?a?a?0,b?0?。b 3 二次根式的加減:二次根式加減時,先將二次根式化為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。海倫-秦九韶公式:S?p(p?a)(p?b)(p?c),S是三角形的面積,p為p?a?b?c,也稱半周長。2第二章 一元二次方程 一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。一元二次方程的解法

      配方法:將方程的一邊配成完全平方式,然后兩邊開方;

      ?b?b2?4ac 公式法:x?

      2a 因式分解法:左邊是兩個因式的乘積,右邊為零。3 一元二次方程在實際問題中的應用 韋達定理:設x1,x2是方程ax2?bx?c?0的兩個根,那么有 x1?x2??,x1?x2? 第三章 旋轉(zhuǎn) 1 圖形的旋轉(zhuǎn)

      旋轉(zhuǎn):一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換 性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;

      對應點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角

      旋轉(zhuǎn)前后的圖形全等。

      中心對稱:一個圖形繞一個點旋轉(zhuǎn)180度,和另一個圖形重合,則兩個圖形關(guān)于這個點中心對稱;

      中心對稱圖形:一個圖形繞某一點旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

      關(guān)于原點對稱的點的坐標

      第四章 圓

      圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直于弦的直徑

      圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

      垂直于弦的直徑平分弦,并且平方弦所對的兩條??;

      平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3 弧、弦、圓心角

      在同圓或等圓中,相等的圓心角所對的弧相等,所

      baca對的弦也相等。

      圓周角

      在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

      半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

      點和圓的位置關(guān)系

      點在 d?r

      點在圓上 d=r 點在圓內(nèi) d

      三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。

      6直線和圓的位置關(guān)系

      相交 dr 切線的性質(zhì)定理:圓的切線垂直于過切點的半徑;

      切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;

      切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。

      三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點,為三角形的內(nèi)心。

      圓和圓的位置關(guān)系

      外離 d>R+r 外切 d=R+r 相交 R-r

      正多邊形的中心:外接圓的圓心

      正多邊形的半徑:外接圓的半徑

      正多邊形的中心角:沒邊所對的圓心角

      正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積

      弧長 l?n?r 180n?r2 扇形面積:S?

      36010 圓錐的側(cè)面積和全面積

      側(cè)面積:

      全面積(附加)相交弦定理、切割線定理 第五章 概率初步

      概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。用列舉法求概率

      一般的,在一次試驗中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=m nm穩(wěn)定在n 3 用頻率去估計概率

      第二篇:西點課業(yè)--初中數(shù)學知識點總結(jié)

      初中數(shù)學知識點總結(jié)

      一、基本知識 ㈠、數(shù)與代數(shù) A、數(shù)與式:

      1、有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù)

      數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

      絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

      有理數(shù)的運算:

      混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

      2、實數(shù)

      無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

      平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

      立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

      實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

      3、代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

      合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式

      整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

      整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算: 整式的乘法

      整式的除法:

      分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

      分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

      分式的運算:

      乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。

      加減法:①同分母的分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

      B、方程與不等式

      1、方程與方程組

      一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

      解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

      二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

      二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

      適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

      一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系 2)一元二次方程的解法

      (1)配方法

      (2)分解因式法

      (3)公式法

      3)解一元二次方程的步驟:

      (1)配方法的步驟:先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

      (2)分解因式法的步驟:把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c 4)韋達定理

      二根之和=-b/a,二根之積=c/a也可以表示為x1+x2=-b/a,x1x2=c/a。5)一元一次方程根的情況

      I當△>0時,一元二次方程有2個不相等的實數(shù)根; II當△=0時,一元二次方程有2個相同的實數(shù)根; III當△<0時,一元二次方程沒有實數(shù)根

      2、不等式與不等式組 不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

      不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。

      一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。一元一次不等式組:①關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。一元一次不等式的符號方向:

      在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,A+C>B+C 在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C

      所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

      3、函數(shù)

      變量:因變量,自變量。

      在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

      一次函數(shù):①若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當B=0時,稱Y是X的正比例函數(shù)。

      一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時,則經(jīng)124象限;當K〉0,B〈0時,則經(jīng)134象限;當K〉0,B〉0時,則經(jīng)123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。㈡空間與圖形 A、圖形的認識

      展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

      截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

      視圖:主視圖,左視圖,俯視圖。

      多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

      弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。

      2、角

      線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。

      角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。

      角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

      平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

      垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

      垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。垂直平分線定理:

      性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等; 判定定理:到線段兩端點距離相等的點在這線段的垂直平分線上

      角平分線:把一個角平分的射線叫該角的角平分線。

      定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

      性質(zhì)定理:角平分線上的點到該角兩邊的距離相等 判定定理:到角的兩邊距離相等的點在該角的角平分線上 正方形:一組鄰邊相等的矩形是正方形

      性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定:

      1、對角線相等的菱形

      2、鄰邊相等的矩形

      3、相交線與平行線

      角:①如果兩個角的和是直角,那么稱和兩個角互為余角;如果兩個角的和是平角,那么稱這兩個角互為補角。②同角或等角的余角/補角相等。③對頂角相等。④同位角相等/內(nèi)錯角相等/同旁內(nèi)角互補,兩直線平行,反之亦然。

      4、三角形

      三角形:①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。②三角形任意兩邊之和大于第三邊。三角形任意兩邊之差小于第三邊。③三角形三個內(nèi)角的和等于180度。④三角形分銳角三角形/直角三角形/鈍角三角形。⑤直角三角形的兩個銳角互余。⑥三角形中一個內(nèi)角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。⑦三角形中,連接一個頂點與他對邊中點的線段叫做這個三角形的中線。⑧三角形的三條角平分線交于一點,三條中線交于一點。⑨從三角形的一個頂點向他的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高。⑩三角形的三條高所在的直線交于一點。

      圖形的全等:全等圖形的形狀和大小都相同。兩個能夠重合的圖形叫全等圖形。全等三角形:①全等三角形的對應邊/角相等。②條件:SSS、AAS、ASA、SAS、HL。

      勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,反之亦然。

      5、四邊形

      平行四邊形的性質(zhì):①兩組對邊分別平行的四邊形叫做平行四邊形。②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。③平行四邊形的對邊/對角相等。④平行四邊形的對角線互相平分。

      平行四邊形的判定條件:兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩組對邊分別相等的四邊形/定義。

      菱形:①一組鄰邊相等的平行四邊形是菱形。②領(lǐng)心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。

      矩形與正方形:①有一個內(nèi)角是直角的平行四邊形叫做矩形。②矩形的對角線相等,四個角都是直角。③對角線相等的平行四邊形是矩形。④正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。⑤一組鄰邊相等的矩形是正方形。

      梯形:①一組對邊平行而另一組對邊不平行的四邊形叫梯形。②兩條腰相等的梯形叫等腰梯形。③一條腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的兩個內(nèi)角相等,對角線星等,反之亦然。

      多邊形:①N邊形的內(nèi)角和等于(N-2)180度。②多邊心內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內(nèi)角和(都等于360度)

      平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。中心對稱圖形:①在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。B、圖形與變換:

      1、圖形的軸對稱

      軸對稱:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。軸對稱圖形:①角的平分線上的點到這個角的兩邊的距離相等。②線段垂直平分線上的點到這條線段兩個端點的距離相等。③等腰三角形的“三線合一”。

      軸對稱的性質(zhì):對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。

      2、圖形的平移和旋轉(zhuǎn)

      平移:①在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。②經(jīng)過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等。旋轉(zhuǎn):①在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。②經(jīng)過旋轉(zhuǎn),圖形商店每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度,任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等。

      3、圖形的相似

      比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。=M/N,那么A+C+?+M/B+D+?N=A/B。①各角對應相等,各邊對應成比例的兩個多邊形叫做相似多邊形。②相似多邊形對應邊的比叫做相似比。

      相似三角形:①三角對應相等,三邊對應成比例的兩個三角形叫做相似三角形。②條件:AAA、SSS、SAS。

      相似多邊形的性質(zhì):①相似三角形對應高,對應角平分線,對應中線的比都等于相似比。②相似多邊形的周長比等于相似比,面積比等于相似比的平方。圖形的放大與縮?。孩偃绻麅蓚€圖形不僅是相似圖形,而且每組對應點所在的直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比。②位似圖形上任意一對對應點到位似中心的距離之比等于位似比。

      C、證明

      定義與命題:①對名稱與術(shù)語的含義加以描述,作出明確的規(guī)定,也就是給出他們的定義。②對事情進行判斷的句子叫做命題(分真命題與假命題)。③每個命題是由條件和結(jié)論兩部分組成。④要說明一個命題是假命題,通常舉出一個離子,使之具備命題的條件,而不具有命題的結(jié)論,這種例子叫做反例。

      公理:①公認的真命題叫做公理。②其他真命題的正確性都通過推理的方法證實,經(jīng)過證明的真命題稱為定理。③同位角相等,兩直線平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁內(nèi)角互補,兩直線平行,反之亦然;內(nèi)錯角相等,兩直線平行,反之亦然;三角形三個內(nèi)角的和等于180度;三角形的一個外交等于和他不相鄰的兩個內(nèi)角的和;三角心的一個外角大于任何一個和他不相鄰的內(nèi)角。④由一個公理或定理直接推出的定理,叫做這個公理或定理的推論。㈢統(tǒng)計與概率

      1、統(tǒng)計

      科學記數(shù)法:一個大于10的數(shù)可以表示成A*10N的形式,其中1小于等于A小于10,N是正整數(shù)。

      扇形統(tǒng)計圖:①用圓表示總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。②扇形統(tǒng)計圖中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數(shù)與360度的比。

      各類統(tǒng)計圖的優(yōu)劣:條形統(tǒng)計圖:能清楚表示出每個項目的具體數(shù)目;折線統(tǒng)計圖:能清楚反映事物的變化情況;扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。近似數(shù)字和有效數(shù)字:①測量的結(jié)果都是近似的。②利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。③對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個數(shù)的有效數(shù)字。

      平均數(shù):對于N個數(shù)X1,X2?XN,我們把(X1+X2+?+XN)/N叫做這個N個數(shù)的算術(shù)平均數(shù),記為X(上邊一橫)。

      加權(quán)平均數(shù):一組數(shù)據(jù)里各個數(shù)據(jù)的重要程度未必相同,因而,在計算這組數(shù)據(jù)的平均數(shù)時往往給每個數(shù)據(jù)加一個權(quán),這就是加權(quán)平均數(shù)。

      中位數(shù)與眾數(shù):①N個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。②一組數(shù)據(jù)中出現(xiàn)次數(shù)最大的那個數(shù)據(jù)叫做這個組數(shù)據(jù)的眾數(shù)。③優(yōu)劣:平均數(shù):所有數(shù)據(jù)參加運算,能充分利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中常用,但容易受極端值影響;中位數(shù):計算簡單,受極端值影響少,但不能充分利用所有數(shù)據(jù)的信息;眾數(shù):各個數(shù)據(jù)如果重復次數(shù)大致相等時,眾數(shù)往往沒有特別的意義。調(diào)查:①為了一定的目的而對考察對象進行的全面調(diào)查,稱為普查,其中所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。②從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。③抽樣調(diào)查只考察總體中的一小部分個體,因此他的優(yōu)點是調(diào)查范圍小,節(jié)省時間,人力,物力和財力,但其調(diào)查結(jié)果往往不如普查得到的結(jié)果準確。為了獲得較為準確的調(diào)查結(jié)果,抽樣時要主要樣本的代表性和廣泛性。

      頻數(shù)與頻率:①每個對象出現(xiàn)的次數(shù)為頻數(shù),而每個對象出現(xiàn)的次數(shù)與總次數(shù)的比值為頻率。②當收集的數(shù)據(jù)連續(xù)取值時,我們通常先將數(shù)據(jù)適當分組,然后再繪制頻數(shù)分布直方圖。

      2、概率

      可能性:①有些事情我們能確定他一定會發(fā)生,這些事情稱為必然事件;有些事情我們能肯定他一定不會發(fā)生,這些事情稱為不可能事件;必然事件和不可能事件都是確定的。②有很多事情我們無法肯定他會不會發(fā)生,這些事情稱為不確定事件。③一般來說,不確定事件發(fā)生的可能性是有大小的。

      概率:①人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。②游戲?qū)﹄p方公平是指雙方獲勝的可能性相同。③必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0〈P(A)〈1。

      二、基本定理

      1、過兩點有且只有一條直線

      2、兩點之間線段最短

      3、同角或等角的補角相等

      4、同角或等角的余角相等

      5、過一點有且只有一條直線和已知直線垂直

      6、直線外一點與直線上各點連接的所有線段中,垂線段最短

      7、平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內(nèi)錯角相等,兩直線平行

      11、同旁內(nèi)角互補,兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內(nèi)錯角相等

      14、兩直線平行,同旁內(nèi)角互補

      15、定理 三角形兩邊的和大于第三邊

      16、推論 三角形兩邊的差小于第三邊

      17、三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°

      18、推論1 直角三角形的兩個銳角互余

      19、推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20、推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

      21、全等三角形的對應邊、對應角相等

      22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

      23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等

      24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

      25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

      26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

      27、定理1 在角的平分線上的點到這個角的兩邊的距離相等

      28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點的集合30、等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等(即等邊對等角)

      31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

      32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

      33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°

      34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      35、推論1 三個角都相等的三角形是等邊三角形

      36、推論 2 有一個角等于60°的等腰三角形是等邊三角形

      37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

      38、直角三角形斜邊上的中線等于斜邊上的一半

      39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

      42、定理1 關(guān)于某條直線對稱的兩個圖形是全等形

      43、定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線

      44、定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

      45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

      46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

      48、定理 四邊形的內(nèi)角和等于360°

      49、四邊形的外角和等于360° 50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

      51、推論 任意多邊的外角和等于360°

      52、平行四邊形性質(zhì)定理1平行四邊形的對角相等

      53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等

      54、推論 夾在兩條平行線間的平行線段相等

      55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

      56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

      57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形

      58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

      59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1 矩形的四個角都是直角 61、矩形性質(zhì)定理2 矩形的對角線相等62、矩形判定定理1 有三個角是直角的四邊形是矩形 63、矩形判定定理2 對角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1 菱形的四條邊都相等 65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

      67、菱形判定定理1 四邊都相等的四邊形是菱形 68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

      70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71、定理1 關(guān)于中心對稱的兩個圖形是全等的 72、定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分 73、逆定理 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱 74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等 75、等腰梯形的兩條對角線相等 76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形 77、對角線相等的梯形是等腰梯形

      78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79、推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

      80、推論2

      經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

      81、三角形中位線定理

      三角形的中位線平行于第三邊,并且等于它的一半

      82、梯形中位線定理

      梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2

      S=L×h 83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性質(zhì): 如果a/b=c/d=?=m/n(b+d+?+n≠0),那么(a+c+?+m)/(b+d+?+n)=a/b

      86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例

      87、推論

      平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88、定理

      如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 90、定理

      平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似 91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)94、判定定理3 三邊對應成比例,兩三角形相似(SSS)95、定理

      如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 96、性質(zhì)定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比 97、性質(zhì)定理2 相似三角形周長的比等于相似比 98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值 101、圓是定點的距離等于定長的點的集合102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合 103、圓的外部可以看作是圓心的距離大于半徑的點的集合 104、同圓或等圓的半徑相等 105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓 106、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線 107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109、定理 不在同一直線上的三點確定一個圓。

      110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧 ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2 圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對稱中心的中心對稱圖形 114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等 115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 116、定理 一條弧所對的圓周角等于它所對的圓心角的一半 117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑 119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 120、定理

      圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

      121、①直線L和⊙O相交 d﹤r ②直線L和⊙O相切

      d=r ③直線L和⊙O相離 d﹥r 122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑 124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點 125、推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心 126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

      127、圓的外切四邊形的兩組對邊的和相等

      128、如果兩個圓相切,那么切點一定在連心線上

      129、①兩圓外離

      d﹥R+r ②兩圓外切

      d=R+r ③兩圓相交

      R-r﹤d﹤R+r(R﹥r)④兩圓內(nèi)切

      d=R-r(R﹥r)

      ⑤兩圓內(nèi)含

      d﹤R-r(R﹥r)130、定理 相交兩圓的連心線垂直平分兩圓的公共弦 131、定理

      任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓 131、正n邊形的每個內(nèi)角都等于(n-2)×180°/n 132、正三角形面積√3a/4

      a表示邊長 133、弧長計算公式:L=n兀R/180.134、扇形面積公式:S扇形=n兀R^2/360=LR/2 初中幾何常見輔助線作法歌訣匯編

      人說幾何很困難,難點就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現(xiàn),對稱中心等分點。梯形里面作高線,平移一腰試試看。平行移動對角線,補成三角形常見。證相似,比線段,添線平行成習慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項一大片。半徑與弦長計算,弦心距來中間站。圓上若有一切線,切點圓心半徑連。切線長度的計算,勾股定理最方便。要想證明是切線,半徑垂線仔細辨。是直徑,成半圓,想成直角徑連弦?;∮兄悬c圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉(zhuǎn)去實驗。基本作圖很關(guān)鍵,平時掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應多變。分析綜合方法選,困難再多也會減。虛心勤學加苦練,成績上升成直線。

      第三篇:初三數(shù)學上冊知識點總結(jié)

      九年級數(shù)學上冊知識點

      (為重中之重)

      第一章

      二次根式

      二次根式:形如()的式子為二次根式;

      性質(zhì):()是一個非負數(shù);

      二次根式的乘除:

      。

      二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。

      二次根式的混合運算

      第二章

      一元二次方程

      一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。

      一元二次方程的解法

      配方法:將方程的一邊配成完全平方式,然后兩邊開方;

      公式法:(其中當△=>0時,方程有兩個不同的實數(shù)根:;當△==0時方程有兩個相等的實數(shù)根:;當△=<0時,方程無實數(shù)根)

      因式分解法:左邊是兩個因式的乘積,右邊為零。

      一元二次方程在實際問題中的應用

      韋達定理:設是方程的兩個根,那么有

      第三章

      旋轉(zhuǎn)

      圖形的旋轉(zhuǎn)

      旋轉(zhuǎn):把一個平面圖形繞著平面內(nèi)某一點O轉(zhuǎn)動一個角度,就叫做圖形的旋轉(zhuǎn)。

      性質(zhì):①對應點到旋轉(zhuǎn)中心的距離相等;

      ②對應點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角

      ③旋轉(zhuǎn)前后的圖形全等。

      會畫出一個圖形順時針或逆時針旋轉(zhuǎn)30°、60°、90°后的圖形。

      中心對稱:把一個圖形繞著某一點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形中心對稱。

      中心對稱圖形:把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形。

      會畫出一個圖形關(guān)于原點對稱得圖形,也就是中心對稱圖形。

      關(guān)于原點對稱的點的坐標

      已知點P的坐標是(x,y):關(guān)于原點對稱的點的坐標是(-x,-y)

      關(guān)于x軸對稱的點的坐標是(x,-y)

      關(guān)于y軸對稱的點的坐標是(-x,y)

      第四章

      圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

      垂直于弦的直徑

      圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

      垂直于弦的直徑平分弦,并且平方弦所對的兩條??;

      平分弦的直徑垂直弦,并且平分弦所對的兩條弧。

      弧、弦、圓心角

      在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。

      圓周角

      在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

      半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

      點和圓的位置關(guān)系

      點在圓外

      點在圓上

      d=r

      點在圓內(nèi)

      d

      定理:不在同一條直線上的三個點確定一個圓。

      三角形的外接圓:經(jīng)過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。

      6直線和圓的位置關(guān)系

      相交

      d

      相切

      d=r

      相離

      d>r

      切線的性質(zhì)定理:圓的切線垂直于過切點的半徑;

      切線的判定定理:經(jīng)過圓的外端并且垂直于這條半徑的直線是圓的切線;

      切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。

      三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點,為三角形的內(nèi)心。

      圓和圓的位置關(guān)系

      外離

      d>R+r

      外切

      d=R+r

      相交

      R-r

      內(nèi)切

      d=R-r

      內(nèi)含

      d

      正多邊形和圓

      正多邊形的中心:外接圓的圓心

      正多邊形的半徑:外接圓的半徑

      正多邊形的中心角:沒邊所對的圓心角

      正多邊形的邊心距:中心到一邊的距離

      弧長和扇形面積

      弧長

      扇形面積:

      圓錐的側(cè)面積和全面積

      側(cè)面積:

      全面積

      (附加)相交弦定理、切割線定理

      第五章

      概率初步

      概率意義:在大量重復試驗中,事件A發(fā)生的頻率穩(wěn)定在某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。

      用列舉法求概率

      一般的,在一次試驗中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=

      用頻率去估計概率

      第四篇:初三數(shù)學上冊知識點

      初三數(shù)學上冊知識點

      一、圓的基本性質(zhì)

      1.圓的定義(兩種)

      2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

      3.“三點定圓”定理

      4.垂徑定理及其推論

      5.“等對等”定理及其推論

      5. 與圓有關(guān)的角:⑴圓心角定義(等對等定理)

      ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)

      ⑶弦切角定義(弦切角定理)

      二、直線和圓的位置關(guān)系

      1.三種位置及判定與性質(zhì):

      2.切線的性質(zhì)(重點)

      3.切線的判定定理(重點)。圓的切線的判定有⑴?⑵?

      4.切線長定理

      三、圓換圓的位置關(guān)系

      1.五種位置關(guān)系及判定與性質(zhì):(重點:相切)

      2.相切(交)兩圓連心線的性質(zhì)定理

      3.兩圓的公切線:⑴定義⑵性質(zhì)

      四、與圓有關(guān)的比例線段

      1.相交弦定理

      2.切割線定理

      五、與和正多邊形

      1.圓的內(nèi)接、外切多邊形(三角形、四邊形)

      2.三角形的外接圓、內(nèi)切圓及性質(zhì)

      3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)

      4.正多邊形及計算

      中心角:

      內(nèi)角的一半:(右圖)

      (解Rt△OAM可求出相關(guān)元素,、等)

      六、一組計算公式

      1.圓周長公式

      2.圓面積公式

      3.扇形面積公式

      4.弧長公式

      5.弓形面積的計算方法

      6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算

      七、點的軌跡

      六條基本軌跡

      八、有關(guān)作圖

      1.作三角形的外接圓、內(nèi)切圓

      2.平分已知弧

      3.作已知兩線段的比例中項

      4.等分圓周:

      4、8;

      6、3等分

      第五篇:初三數(shù)學知識點總結(jié)和歸納

      小編整理了關(guān)于初三數(shù)學知識點總結(jié)和歸納,包括三角形的定義、實數(shù)的概念運算、圓的知識點、代數(shù)、函數(shù)等有關(guān)知識點,初三數(shù)學知識點以供同學們參考和學習!

      初三數(shù)學知識點 第一章 實數(shù)

      ★重點★ 實數(shù)的有關(guān)概念及性質(zhì),實數(shù)的運算

      ☆內(nèi)容提要☆

      一、重要概念

      1.數(shù)的分類及概念

      數(shù)系表:

      說明:“分類”的原則:1)相稱(不重、不漏)

      2)有標準

      2.非負數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)

      常見的非負數(shù)有:

      性質(zhì):若干個非負數(shù)的和為0,則每個非負擔數(shù)均為0。

      3.倒數(shù): ①定義及表示法

      ②性質(zhì):A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。

      4.相反數(shù): ①定義及表示法

      ②性質(zhì):A.a≠0時,a≠-a;B.a與-a在數(shù)軸上的位置;C.和為0,商為-1。

      5.數(shù)軸:①定義(“三要素”)

      ②作用:A.直觀地比較實數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點與實數(shù)的一一對應關(guān)系。

      6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))

      定義及表示:

      奇數(shù):2n-1

      偶數(shù):2n(n為自然數(shù))

      7.絕對值:①定義(兩種):

      代數(shù)定義:

      幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應的點到原點的距離。

      ②│a│≥0,符號“││”是“非負數(shù)”的標志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。

      二、實數(shù)的運算

      1.運算法則(加、減、乘、除、乘方、開方)

      2.運算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]

      分配律)

      3.運算順序:A.高級運算到低級運算;B.(同級運算)從“左”

      到“右”(如5÷ 35);C.(有括號時)由“小”到“中”到“大”。

      三、應用舉例(略)

      附:典型例題

      1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│

      =b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。

      初三數(shù)學知識點 第二章 代數(shù)式

      ★重點★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運算

      ☆內(nèi)容提要☆

      一、重要概念

      分類:

      1.代數(shù)式與有理式

      用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨

      的一個數(shù)或字母也是代數(shù)式。

      整式和分式統(tǒng)稱為有理式。

      2.整式和分式

      含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。

      沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

      有除法運算并且除式中含有字母的有理式叫做分式。

      3.單項式與多項式

      沒有加減運算的整式叫做單項式。(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)

      幾個單項式的和,叫做多項式。

      說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,=x, =│x│等。

      4.系數(shù)與指數(shù)

      區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看

      5.同類項及其合并

      條件:①字母相同;②相同字母的指數(shù)相同

      合并依據(jù):乘法分配律

      6.根式

      表示方根的代數(shù)式叫做根式。

      含有關(guān)于字母開方運算的代數(shù)式叫做無理式。

      注意:①從外形上判斷;②區(qū)別:、是根式,但不是無理式(是無理數(shù))。

      7.算術(shù)平方根

      ⑴正數(shù)a的正的平方根([a≥0—與“平方根”的區(qū)別]);

      ⑵算術(shù)平方根與絕對值

      ① 聯(lián)系:都是非負數(shù),=│a│

      ②區(qū)別:│a│中,a為一切實數(shù);中,a為非負數(shù)。

      8.同類二次根式、最簡二次根式、分母有理化

      化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。

      滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。

      把分母中的根號劃去叫做分母有理化。

      9.指數(shù)

      ⑴(—冪,乘方運算)

      ① a>0時,>0;②a<0時,>0(n是偶數(shù)),<0(n是奇數(shù))

      ⑵零指數(shù): =1(a≠0)

      負整指數(shù): =1/(a≠0,p是正整數(shù))

      二、運算定律、性質(zhì)、法則

      1.分式的加、減、乘、除、乘方、開方法則

      2.分式的性質(zhì)

      ⑴基本性質(zhì): =(m≠0)

      ⑵符號法則:

      ⑶繁分式:①定義;②化簡方法(兩種)

      3.整式運算法則(去括號、添括號法則)

      4.冪的運算性質(zhì):① 2 =;② ÷ =;③ =;④ =;⑤

      技巧:

      5.乘法法則:⑴單3單;⑵單3多;⑶多3多。

      6.乘法公式:(正、逆用)

      (a+b)(a-b)=

      (a±b)=

      7.除法法則:⑴單÷單;⑵多÷單。

      8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。

      9.算術(shù)根的性質(zhì): =;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)

      10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A.;B.;C..11.科學記數(shù)法:(1≤a<10,n是整數(shù)=

      三、應用舉例(略)

      四、數(shù)式綜合運算(略)初三數(shù)學知識點:第三章 統(tǒng)計初步

      ★重點★

      ☆ 內(nèi)容提要☆

      一、重要概念

      1.總體:考察對象的全體。

      2.個體:總體中每一個考察對象。

      3.樣本:從總體中抽出的一部分個體。

      4.樣本容量:樣本中個體的數(shù)目。

      5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。

      6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))

      二、計算方法

      1.樣本平均數(shù):⑴;⑵若,?,,則(a—常數(shù),,?,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準確。

      2.樣本方差:⑴;⑵若 , ,?, ,則(a—接近、、?、的平均數(shù)的較“整”的常數(shù));若、、?、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

      3.樣本標準差:

      三、應用舉例(略)

      初三數(shù)學知識點:第四章 直線形

      ★重點★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

      ☆ 內(nèi)容提要☆

      一、直線、相交線、平行線

      1.線段、射線、直線三者的區(qū)別與聯(lián)系

      從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質(zhì)”等方面加以分析。

      2.線段的中點及表示

      3.直線、線段的基本性質(zhì)(用“線段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

      4.兩點間的距離(三個距離:點-點;點-線;線-線)

      5.角(平角、周角、直角、銳角、鈍角)

      6.互為余角、互為補角及表示方法

      7.角的平分線及其表示

      8.垂線及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

      9.對頂角及性質(zhì)

      10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

      11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

      12.定義、命題、命題的組成 13.公理、定理

      14.逆命題二、三角形

      分類:⑴按邊分;

      ⑵按角分

      1.定義(包括內(nèi)、外角)

      2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段

      討論:①定義②33線的交點—三角形的3心③性質(zhì)

      ① 高線②中線③角平分線④中垂線⑤中位線

      ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

      4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

      5.全等三角形

      ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

      ⑵特殊三角形全等的判定:①一般方法②專用方法

      6.三角形的面積

      ⑴一般計算公式⑵性質(zhì):等底等高的三角形面積相等。

      7.重要輔助線

      ⑴中點配中點構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線

      8.證明方法

      ⑴直接證法:綜合法、分析法

      ⑵間接證法—反證法:①反設②歸謬③結(jié)論

      ⑶證線段相等、角相等常通過證三角形全等

      ⑷證線段倍分關(guān)系:加倍法、折半法

      ⑸證線段和差關(guān)系:延結(jié)法、截余法

      ⑹證面積關(guān)系:將面積表示出來三、四邊形

      分類表:

      1.一般性質(zhì)(角)

      ⑴內(nèi)角和:360°

      ⑵順次連結(jié)各邊中點得平行四邊形。

      推論1:順次連結(jié)對角線相等的四邊形各邊中點得菱形。

      推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點得矩形。

      ⑶外角和:360°

      2.特殊四邊形

      ⑴研究它們的一般方法:

      ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

      ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

      ┗→菱形——↑

      ⑷對角線的紐帶作用:

      3.對稱圖形

      ⑴軸對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))

      4.有關(guān)定理:①平行線等分線段定理及其推論1、2

      ②三角形、梯形的中位線定理

      ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

      5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中?!捌揭埔谎?、“平移對角線”、“作高”、“連結(jié)頂點和對腰中點并延長與底邊相交”轉(zhuǎn)化為三角形。

      6.作圖:任意等分線段。

      四、應用舉例(略)初三數(shù)學知識點 第五章 方程(組)

      ★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應用題(特別是行程、工程問題)

      ☆ 內(nèi)容提要☆

      一、基本概念

      1.方程、方程的解(根)、方程組的解、解方程(組)

      2.分類:

      二、解方程的依據(jù)—等式性質(zhì)

      1.a=b←→a+c=b+c

      2.a=b←→ac=bc(c≠0)

      三、解法

      1.一元一次方程的解法:去分母→去括號→移項→合并同類項→

      系數(shù)化成1→解。

      2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

      ②加減法四、一元二次方程

      1.定義及一般形式:

      2.解法:⑴直接開平方法(注意特征)

      ⑵配方法(注意步驟—推倒求根公式)

      ⑶公式法:

      ⑷因式分解法(特征:左邊=0)

      3.根的判別式:

      4.根與系數(shù)頂?shù)年P(guān)系:

      逆定理:若,則以 為根的一元二次方程是:。

      5.常用等式:

      五、可化為一元二次方程的方程

      1.分式方程

      ⑴定義

      ⑵基本思想:

      ⑶基本解法:①去分母法②換元法(如,)

      ⑷驗根及方法

      2.無理方程

      ⑴定義

      ⑵基本思想:

      ⑶基本解法:①乘方法(注意技巧!)②換元法(例,)⑷驗根及方法

      3.簡單的二元二次方程組

      由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

      初三數(shù)學知識點

      六、列方程(組)解應用題

      一概述

      列方程(組)解應用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是:

      ⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。

      ⑵設元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。

      ⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。

      ⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。

      ⑸解方程及檢驗。

      ⑹答案。

      綜上所述,列方程(組)解應用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關(guān)鍵。

      二常用的相等關(guān)系

      1.行程問題(勻速運動)

      基本關(guān)系:s=vt

      ⑴相遇問題(同時出發(fā)):

      + =;

      ⑵追及問題(同時出發(fā)):

      若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則

      ⑶水中航行:;

      2.配料問題:溶質(zhì)=溶液3濃度

      溶液=溶質(zhì)+溶劑

      3.增長率問題:

      4.工程問題:基本關(guān)系:工作量=工作效率3工作時間(常把工作量看著單位“1”)。

      5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

      三注意語言與解析式的互化

      如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、??

      又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。

      四注意從語言敘述中寫出相等關(guān)系。

      如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算

      如,“小時”“分鐘”的換算;s、v、t單位的一致等。

      七、應用舉例(略)

      初三數(shù)學知識點:第六章 一元一次不等式(組)

      ★重點★一元一次不等式的性質(zhì)、解法

      ☆ 內(nèi)容提要☆

      1.定義:a>b、a

      2.一元一次不等式:ax>b、ax

      3.一元一次不等式組:

      4.不等式的性質(zhì):⑴a>b←→a+c>b+c

      ⑵a>b←→ac>bc(c>0)

      ⑶a>b←→ac

      ⑷(傳遞性)a>b,b>c→a>c

      ⑸a>b,c>d→a+c>b+d.5.一元一次不等式的解、解一元一次不等式

      6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)

      7.應用舉例(略)初三數(shù)學知識點 第七章 相似形

      ★重點★相似三角形的判定和性質(zhì)

      ☆內(nèi)容提要☆

      一、本章的兩套定理

      第一套(比例的有關(guān)性質(zhì)):

      涉及概念:①第四比例項②比例中項③比的前項、后項,比的內(nèi)項、外項④黃金分割等。

      第二套:

      注意:①定理中“對應”二字的含義;

      ②平行→相似(比例線段)→平行。

      二、相似三角形性質(zhì)

      1.對應線段?;2.對應周長?;3.對應面積?。

      三、相關(guān)作圖

      ①作第四比例項;②作比例中項。

      四、證(解)題規(guī)律、輔助線

      1.“等積”變“比例”,“比例”找“相似”。

      2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴

      3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。

      4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設“公比”為k。

      5.對于復雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。

      五、應用舉例(略)

      初三數(shù)學知識點 第八章 函數(shù)及其圖象

      ★重點★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。

      ☆ 內(nèi)容提要☆

      一、平面直角坐標系

      1.各象限內(nèi)點的坐標的特點

      2.坐標軸上點的坐標的特點

      3.關(guān)于坐標軸、原點對稱的點的坐標的特點

      4.坐標平面內(nèi)點與有序?qū)崝?shù)對的對應關(guān)系

      二、函數(shù)

      1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

      2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有

      意義。

      3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。

      三、幾種特殊函數(shù)

      (定義→圖象→性質(zhì))

      1.正比例函數(shù)

      ⑴定義:y=kx(k≠0)或y/x=k。

      ⑵圖象:直線(過原點)

      ⑶性質(zhì):①k>0,?②k<0,?

      2.一次函數(shù)

      ⑴定義:y=kx+b(k≠0)

      ⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。

      ⑶性質(zhì):①k>0,?②k<0,?

      ⑷圖象的四種情況:

      3.二次函數(shù)

      ⑴定義:

      特殊地,都是二次函數(shù)。

      ⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變?yōu)椋瑒t頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。

      ⑶性質(zhì):a>0時,在對稱軸左側(cè)?,右側(cè)?;a<0時,在對稱軸左側(cè)?,右側(cè)?。

      4.反比例函數(shù)

      ⑴定義: 或xy=k(k≠0)。

      ⑵圖象:雙曲線(兩支)—用描點法畫出。

      ⑶性質(zhì):①k>0時,圖象位于?,y隨x?;②k<0時,圖象位于?,y隨x?;③兩支曲線無限接近于坐標軸但永遠不能到達坐標軸。

      四、重要解題方法

      1.用待定系數(shù)法求解析式(列方程[組]求解)。對求二次函數(shù)的解析式,要合理選用一般式或頂點式,并應充分運用拋物線關(guān)于對稱軸對稱的特點,尋找新的點的坐標。如下圖:

      2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號。

      六、應用舉例(略)

      初三數(shù)學知識點 第九章 解直角三角形

      ★重點★解直角三角形

      ☆ 內(nèi)容提要☆ 一、三角函數(shù)

      1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函數(shù)值:

      0° 30° 45° 60° 90°

      sinα

      cosα

      tgα /

      ctgα /

      3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;?

      4.三角函數(shù)值隨角度變化的關(guān)系

      5.查三角函數(shù)表

      二、解直角三角形

      1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

      2.依據(jù):①邊的關(guān)系:

      ②角的關(guān)系:A+B=90°

      ③邊角關(guān)系:三角函數(shù)的定義。

      注意:盡量避免使用中間數(shù)據(jù)和除法。

      三、對實際問題的處理

      1.俯、仰角: 2.方位角、象限角: 3.坡度:

      4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。

      四、應用舉例(略)

      初三數(shù)學知識點 第十章 圓

      ★重點★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。

      ☆ 內(nèi)容提要☆

      一、圓的基本性質(zhì)

      1.圓的定義(兩種)

      2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。

      3.“三點定圓”定理

      4.垂徑定理及其推論

      5.“等對等”定理及其推論

      5.與圓有關(guān)的角:⑴圓心角定義(等對等定理)

      ⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)

      ⑶弦切角定義(弦切角定理)

      二、直線和圓的位置關(guān)系

      1.三種位置及判定與性質(zhì):

      2.切線的性質(zhì)(重點)

      3.切線的判定定理(重點)。圓的切線的判定有⑴?⑵?

      4.切線長定理

      三、圓換圓的位置關(guān)系

      1.五種位置關(guān)系及判定與性質(zhì):(重點:相切)

      2.相切(交)兩圓連心線的性質(zhì)定理

      3.兩圓的公切線:⑴定義⑵性質(zhì)

      四、與圓有關(guān)的比例線段

      1.相交弦定理

      2.切割線定理

      五、與和正多邊形

      1.圓的內(nèi)接、外切多邊形(三角形、四邊形)

      2.三角形的外接圓、內(nèi)切圓及性質(zhì)

      3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)

      4.正多邊形及計算

      中心角:

      內(nèi)角的一半:(右圖)

      (解Rt△OAM可求出相關(guān)元素,、等)

      六、一組計算公式

      1.圓周長公式

      2.圓面積公式

      3.扇形面積公式

      4.弧長公式

      5.弓形面積的計算方法

      6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計算

      七、點的軌跡

      六條基本軌跡

      八、有關(guān)作圖

      1.作三角形的外接圓、內(nèi)切圓

      2.平分已知弧

      3.作已知兩線段的比例中項

      4.等分圓周:

      4、8;

      6、3等分

      九、基本圖形

      十、重要輔助線

      1.作半徑

      2.見弦往往作弦心距

      3.見直徑往往作直徑上的圓周角

      4.切點圓心莫忘連

      5.兩圓相切公切線(連心線)

      6.兩圓相交公共弦

      下載西點課業(yè)--初三數(shù)學上冊知識點總結(jié)word格式文檔
      下載西點課業(yè)--初三數(shù)學上冊知識點總結(jié).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        初三上冊化學知識點總結(jié)

        專題2初三化學上冊知識點 潤禾教育 2011.11.23 (一)知識點概述 1. 化學是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實驗為基礎自然科學。 2. 化學變化和物理變化的根......

        化學初三上冊知識點總結(jié)大全

        知識是智慧的火花,能使奮斗者升起才華的烈焰;知識是春耕的犁鏵,一旦手入生活的荒徑,就能使田地地芳草萋萋,碩果累累。下面小編給大家分享一些化學初三上冊知識總結(jié),希望能夠幫助......

        初三政治上冊知識點總結(jié).

        初三政治知識點歸納 九年級 (初三 政治知識點:第一單元知識點 1、什么是公平? 公平意味著參與社會合作的每一個人既要承擔應分擔的責任,又能得到應得到的利益, 實現(xiàn)權(quán)利和義......

        初三上冊化學知識點總結(jié)

        專題2初三化學上冊知識點 潤禾教育 2011.11.23 (一)知識點概述 1. 化學是一門研究物質(zhì)的組成、結(jié)構(gòu)、性質(zhì)以及變化規(guī)律的以實驗為基礎自然科學。 2. 化學變化和物理變化的根本......

        初三數(shù)學旋轉(zhuǎn)知識點總結(jié)

        第23章旋轉(zhuǎn)知識點總結(jié)一、旋轉(zhuǎn)1、定義把一個圖形繞某一點O轉(zhuǎn)動一個角度的叫做旋轉(zhuǎn),其中O叫做,叫做旋轉(zhuǎn)角。2、性質(zhì)(1)對應點到的距離相等。(2)對應點與旋轉(zhuǎn)中心所連線段的夾角等于......

        初三數(shù)學圓知識點總結(jié)

        初三數(shù)學圓知識點總結(jié)一、本章知識框架二、本章重點1.圓的定義:(1)線段OA繞著它的一個端點O旋轉(zhuǎn)一周,另一個端點A所形成的封閉曲線,叫做圓.(2)圓是到定點的距離等于定長的點的集......

        初三數(shù)學三角形知識點總結(jié)歸納

        三角形的定義 三角形是多邊形中邊數(shù)最少的一種。它的定義是:由不在同一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。 三條線段不在同一條直線上的條件,如果三條線段......

        初三數(shù)學圓知識點總結(jié)

        初三數(shù)學 圓知識點總結(jié) 一、本章知識框架 二、本章重點 1.圓的定義: (1)線段OA繞著它的一個端點O旋轉(zhuǎn)一周,另一個端點A所形成的封閉曲線,叫做圓. (2)圓是到定點的距離等于定長的......