第一篇:微課堂教學(xué)設(shè)計(jì)——三角形中位線
初三上冊(cè)第五章第三節(jié)《三角形的中位線》
《三角形中位線性質(zhì)定理的探索與證明》微課堂教學(xué)設(shè)計(jì)
一、目標(biāo)設(shè)計(jì):
(一)知識(shí)目標(biāo) :
1.了解三角形中位線的概念。
2.掌握三角形中位線定理的證明和有關(guān)應(yīng)用。
(二)能力目標(biāo) :
1. 經(jīng)歷“探索—發(fā)現(xiàn)—猜想—證明”的過(guò)程,進(jìn)一步發(fā)展推理論證能力。2. 通過(guò)三角形的中位線定理的證明,體會(huì)在證明過(guò)程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。
3.能夠應(yīng)用三角形的中位線定理進(jìn)行有關(guān)的論證和計(jì)算,逐步提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
(三).情感目標(biāo)
通過(guò)學(xué)生動(dòng)手操作、觀察、實(shí)驗(yàn)、推理、猜想、論證等自主探索與合作交流的過(guò)程,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生真正體驗(yàn)知識(shí)的發(fā)生和發(fā)展過(guò)程,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
二、過(guò)程設(shè)計(jì):
(一)趣題導(dǎo)入,提出問(wèn)題:
1.PPT呈現(xiàn)問(wèn)題1:你能將任意一個(gè)三角形分成四個(gè)全等的三角形嗎?這四個(gè)全等三角形能拼湊成一個(gè)平行四邊形嗎?
【問(wèn)題應(yīng)對(duì)】學(xué)生利用課前已準(zhǔn)備好的任意的不等邊三角形紙片,進(jìn)行實(shí)踐操作(先自主探究,解決不了的可小組合作,最后集體交流展示)
2.PPT呈現(xiàn)問(wèn)題2:你有辦法驗(yàn)證嗎?
【問(wèn)題應(yīng)對(duì)】學(xué)生的驗(yàn)證方法較多,其中較為典型的方法 有:利用手工紙剪、拼,或是通過(guò)度量用三角形判定方法進(jìn)行驗(yàn)證等
3.引導(dǎo):上述同學(xué)都采用了實(shí)驗(yàn)法,存在誤差,那么如何利用推理論證的方法驗(yàn)證呢?
【設(shè)計(jì)意圖】力求實(shí)踐“以學(xué)為主”這一教學(xué)理念,打破“教師講,學(xué)生聽(tīng)”的教學(xué)模式,教師大膽放手,不過(guò)分主宰課堂。
(二)合作交流,探究新知:
1.師利用PPT演示、介紹、剖析“三角形中位線”定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
【問(wèn)題應(yīng)對(duì)】學(xué)生觀察初步獲得:三角形中位線的形象并通過(guò)以下兩個(gè)小問(wèn)題的設(shè)計(jì) ① 如果D、E分別為AB、AC的中點(diǎn),那么DE為△ABC的 ; ② 如果DE為△ABC的中位線,那么 D、E分別為AB、AC的,使學(xué)生理解概念的本質(zhì)。
2.概念對(duì)比:三角形的中位線與中線有什么區(qū)別與聯(lián)系呢?(PPT展示中線與中位線)【問(wèn)題應(yīng)對(duì)】通過(guò)圖示與教師講解相結(jié)合,使抽象的概念直觀化,避免概念混淆 3.問(wèn)題:結(jié)合前面的驗(yàn)證,你能猜想出三角形的中位線與第三邊有怎樣的位置關(guān)系?有怎樣的數(shù)量關(guān)系?又進(jìn)行證明呢?
【處理策略】學(xué)生對(duì)這一結(jié)論的證明有一定的難度,老師可進(jìn)行適當(dāng)?shù)囊龑?dǎo):要證明兩條直線平行,可以利用“三線八角”的有關(guān)內(nèi)容進(jìn)行轉(zhuǎn)化,而要證明一條線段的長(zhǎng)等于另一條線段長(zhǎng)度的一半,可采用將較短的線段延長(zhǎng)一倍,或者截取較長(zhǎng)線段的一半等方法進(jìn)行轉(zhuǎn)化歸納。)
4.問(wèn)題:你能利用三角形中位線定理說(shuō)明本節(jié)課開(kāi)始提出的趣題的合理性嗎? 【設(shè)計(jì)意圖】通過(guò)中位線定理的證明過(guò)程,體會(huì)在證明過(guò)程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。不僅開(kāi)闊了學(xué)生添加輔助線的思路:借助中點(diǎn)構(gòu)造全等三角形,為后面許多問(wèn)題的解決埋下了伏筆,更重要的是讓學(xué)生真正體驗(yàn)知識(shí)的發(fā)生和發(fā)展過(guò)程,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
(三)典例示范,升華提高:
PPT課件展示例題:已知:在四邊形ABCD中,E、F、G、H分別是 AB、BC、CD、DA的中點(diǎn).猜想四邊形EFGH的形狀并證明。
【問(wèn)題應(yīng)對(duì)】如果學(xué)生探究有困難,可適當(dāng)?shù)剡M(jìn)行友情提示:三角形中位線必須在什么圖形中用?若沒(méi)有這種圖形該怎么辦呢?
回思:你的證明方法是唯一的嗎?
【設(shè)計(jì)意圖】 努力探索解決問(wèn)題的多種途徑,逐步培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力,同時(shí)培養(yǎng)學(xué)生一題多思、一題多解的能力。
三、評(píng)價(jià)設(shè)計(jì): 在教學(xué)設(shè)計(jì)時(shí)我始終堅(jiān)持以教給學(xué)生解決問(wèn)題的方法,培養(yǎng)學(xué)生能力為主線,教師只是起到拋磚引玉的作用。“思維總是從提出問(wèn)題開(kāi)始的”,課堂提問(wèn)是啟發(fā)學(xué)生積極思維的重要手段,在本課時(shí)中我拋出了多個(gè)富有吸引力的提問(wèn)來(lái)激發(fā)學(xué)生的興趣。比如在第一個(gè)教學(xué)環(huán)節(jié)中我就以“如何將一個(gè)任意三角形分為四個(gè)全等的三角形”這一問(wèn)題為出發(fā)點(diǎn),引導(dǎo)學(xué)生以平行四邊形的性質(zhì)定理和判定定理為橋梁,探究了三角形中位線的基本性質(zhì)和應(yīng)用。在本節(jié)課中,學(xué)生親身經(jīng)歷了“探索—發(fā)現(xiàn)—猜想—證明”的探究過(guò)程,體會(huì)了證明的必要性和證明方法的多樣性。在此過(guò)程中注重新舊知識(shí)的聯(lián)系,同時(shí)強(qiáng)調(diào)轉(zhuǎn)化、類比、歸納等數(shù)學(xué)思想方法的恰當(dāng)應(yīng)用。既滿足了學(xué)生探求新知的欲望,獲得成功的體驗(yàn),又刺激學(xué)生進(jìn)行更深入的探索。最大限度地發(fā)揮了學(xué)生的主體性,讓學(xué)生充分參與教學(xué)活動(dòng)中來(lái)。
第二篇:《三角形中位線》教學(xué)設(shè)計(jì)
《三角形中位線》教學(xué)設(shè)計(jì)
一、教學(xué)目標(biāo):
1.使學(xué)生掌握三角形中位線概念,理解中位線定理,會(huì)運(yùn)用它進(jìn)行有關(guān)論證和計(jì)算.2.掌握添加輔助線解題的技巧.3.提高學(xué)生分析問(wèn)題,解決問(wèn)題的能力,增強(qiáng)學(xué)習(xí)興趣.二、教學(xué)方法
探究式自主學(xué)習(xí):以學(xué)生的自主探究為主,教師加以引導(dǎo)啟發(fā),在師生的共同探究活動(dòng)中,完成本課的教學(xué)目標(biāo),提高學(xué)生的能力,使學(xué)生更好的適應(yīng)新課程標(biāo)準(zhǔn)
三、教學(xué)內(nèi)容﹑教材重、難點(diǎn)分析:
三角形中位線定理的學(xué)習(xí)是繼學(xué)習(xí)習(xí)近平行四邊形后的一個(gè)新內(nèi)容,教材首先給出了三角形中位線的定義,并與三角形中線加以區(qū)分,接著以同一法的思想探索出三角形中位線定理,最后是利用中位線定理解答例一所給的問(wèn)題.在今后的學(xué)習(xí)中要經(jīng)常運(yùn)用這個(gè)定理解決有關(guān)直線平行和線段倍分等問(wèn)題.本節(jié)課的重點(diǎn)是三角形中位線定理,難點(diǎn)是定理的證明,關(guān)鍵在于如何添加輔助線,在今后的學(xué)習(xí)中要經(jīng)常運(yùn)用這個(gè)定理解決有關(guān)直線平行和線段倍分等問(wèn)題.四、教學(xué)媒體的選擇和設(shè)計(jì)
通過(guò)多媒體課件,打開(kāi)學(xué)生的思路,增加課堂的容量,提高課堂效率。
以實(shí)際生活為出發(fā)點(diǎn),激發(fā)學(xué)生的思維從而引出本節(jié)課的內(nèi)容.通過(guò)媒體動(dòng)態(tài)的效果引發(fā)學(xué)生的思路,猜想出結(jié)論,并且從添加輔助線的角度思考開(kāi)始,分析條件,得出證明的方法,幫助學(xué)生用多種方法解題.再借助多媒體幫助學(xué)生分析題意,學(xué)生自己動(dòng)手嘗試?yán)萌切沃形痪€解決實(shí)際問(wèn)題.特點(diǎn)是:打破以前數(shù)學(xué)課上老師一言談的現(xiàn)象,學(xué)生能夠積極參與學(xué)習(xí),并且在媒體的作用下,學(xué)生的思維可以得到充分的展示,媒體動(dòng)態(tài)的演示教會(huì)學(xué)生探究知識(shí)的方法:猜想—?dú)w納—研究—結(jié)論.同時(shí)運(yùn)用多媒體大大增強(qiáng)了課堂的容量,這是一般教學(xué)所難以實(shí)現(xiàn)的.五、教學(xué)步驟
(一)導(dǎo)入:
老師今天準(zhǔn)備了一塊三角形蛋糕平均分給四個(gè)人,該如何分?好,你們的方法很多,能給老師用數(shù)學(xué)知識(shí)解釋一下你們分法的理由嗎?對(duì)于第三種是不是合理,大家解釋起來(lái)有困難,通過(guò)下面的學(xué)習(xí)后我想請(qǐng)大家解釋給我聽(tīng).(二)1.我們把剛才第三種切法中所提到的三條線段叫三角形中位線.哪個(gè)同學(xué)能給我們用語(yǔ)言敘述清楚.結(jié)合圖形用幾何語(yǔ)言表述三角形中線概念,它與三角形中線有什么區(qū)別?
2.好,看了三角形中位線會(huì)有什么性質(zhì)呢?請(qǐng)同學(xué)們看下面的實(shí)驗(yàn):老師把一個(gè)三角形沿一條中位線分開(kāi),并繞一個(gè)中點(diǎn)旋轉(zhuǎn)180°,觀察圖形變成了什么圖形?由此你可以發(fā)現(xiàn)三角形中位線有什么特性.用一句話說(shuō)出來(lái).該如何證明呢?對(duì),我們可以通過(guò)旋轉(zhuǎn)的方法構(gòu)造平行四邊形,用平行四邊形知識(shí)進(jìn)行證明.這種添加輔助線的方法叫割補(bǔ)法.請(qǐng)問(wèn)還有什么添加方法? 證明了我們的猜想,下面我們結(jié)合圖形用幾何語(yǔ)言把三角形中位線定理敘述出來(lái).請(qǐng)大家注意它與前面復(fù)習(xí)的推論(2)的關(guān)系?
(三)好,下面,我想請(qǐng)同學(xué)們幫助老師解決兩個(gè)問(wèn)題:1,我想測(cè)量一條湖面的寬度,能不能用三角形中位線知識(shí)設(shè)計(jì)一個(gè)方案,并說(shuō)明這樣做的理由.2.請(qǐng)問(wèn)前面切蛋糕方法(3)是否合理,為什么?
(四)好,下面,請(qǐng)大家我們就要自己動(dòng)手,來(lái)練習(xí)一下,看對(duì)三角形中位線定理是不是理解了.請(qǐng)大家看例1,要證明平行四邊形有什么方法,從這個(gè)圖形中我們能夠分解出兩個(gè)基本圖形.如何解答,請(qǐng)一位同學(xué)說(shuō),老師寫.下面看例2,題目中的中點(diǎn)如何才能運(yùn)用起來(lái).對(duì),通過(guò)連接中點(diǎn)構(gòu)造中位線來(lái)解決,請(qǐng)大家自己寫出過(guò)程,用實(shí)物投影儀進(jìn)行點(diǎn)評(píng).剛才的例2使我們看到中位線與對(duì)角線的關(guān)系,請(qǐng)大家觀察下面圖形的變化,討論變化后的圖形是什么四邊形.小結(jié):三角形中位線定理的結(jié)論有兩個(gè)方面:1,證明平行,2證明倍份關(guān)系.(五)思考題:要解決這樣的倍份問(wèn)題常常通過(guò)添加輔助線,借助三角形中位線解題.(六)小結(jié),布置作業(yè):P188 5,6,7
六、教學(xué)流程圖 問(wèn)題引入概念
復(fù)
習(xí)
Flash動(dòng)畫
明確三角形中位線概念
三角形中位線定理的證明
三角形中位線定理的簡(jiǎn)單運(yùn)用
討論判斷練習(xí)2
教師總結(jié)、布置作業(yè)
結(jié)
束
練習(xí)1
講解例1
講解例2
思
考
七、教學(xué)評(píng)價(jià):
1.先從學(xué)生已經(jīng)學(xué)過(guò)的知識(shí)入手,為進(jìn)一步學(xué)習(xí)奠定基礎(chǔ),同時(shí)也為學(xué)生的知識(shí)體系進(jìn)行一次簡(jiǎn)單的梳理
2.通過(guò)一幅形象生動(dòng)的圖畫帶來(lái)的問(wèn)題引發(fā)學(xué)生的思考,可以增加學(xué)生的參與性,有許多平時(shí)不愛(ài)思考學(xué)生,此刻都愿意想,愿意說(shuō)。更加的體現(xiàn)數(shù)學(xué)來(lái)源于生活,生活中充滿數(shù)學(xué)知識(shí),3.教師是學(xué)生學(xué)習(xí)的組織者和參與者,在本節(jié)課中,動(dòng)畫的演示調(diào)動(dòng)了學(xué)生的思維,為打開(kāi)解題思路提供了一把鑰匙,而不是生硬的傳授知識(shí).4.信息量擴(kuò)大了,課堂容量大了。教師可以在短時(shí)間講清講透知識(shí)點(diǎn),并可以借助媒體切換的方便快捷性,講解較多題目,學(xué)生也不覺(jué)得累,同時(shí)對(duì)于知識(shí)間的相互聯(lián)系性,能夠幫助學(xué)生理解和掌握.是傳統(tǒng)學(xué)模式所不能達(dá)到的。
5.計(jì)算機(jī)輔助教學(xué)可以讓學(xué)生有新鮮感,比較感興趣,使得課堂教學(xué)比較有活力,學(xué)生的印象也深刻,從而更好的達(dá)到教學(xué)目標(biāo)。
6.計(jì)算機(jī)輔助教學(xué)能夠有效提高教學(xué)效果,提高學(xué)生的綜合能力,但也容易分散學(xué)生的注意點(diǎn),因此要求課件上能為教學(xué)服務(wù)而設(shè)計(jì),不能為了運(yùn)用媒體而用,那樣會(huì)失去它的真正意義.
第三篇:《三角形中位線》教案
《三角形中位線》教案 教學(xué)目的:
1、.理解三角形中位線的概念,掌握它的性質(zhì)定理。2.初步運(yùn)用三角形的中位線定理進(jìn)行求解與推理。
3、經(jīng)歷探索、猜想、證明過(guò)程,發(fā)展推理論證能力。培養(yǎng)分析問(wèn)題和解決問(wèn)題的能力以及思維的靈活性。
4、通過(guò)自主探究、猜想、驗(yàn)證,獲得親自參與研究的情感體驗(yàn),增強(qiáng)學(xué)習(xí)熱情。
重點(diǎn):三角形中位線性質(zhì)定理;
難點(diǎn):定理證明中添加輔助線的思想方法。教學(xué)方式:?jiǎn)l(fā)、引導(dǎo)、探究 教學(xué)過(guò)程:
一、情景引入
生活實(shí)例。如圖:A,B兩地被池塘隔開(kāi),在沒(méi)有任何測(cè)量工具的情況下,小明通過(guò)下面的方法估測(cè)出了A,B間的距離:先在A,B外選了一點(diǎn)C,然后步測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)出MN的長(zhǎng),由此他就知道了A,B間的距離。誰(shuí)能說(shuō)出其中的道理嗎?我們就能解開(kāi)這個(gè)疑團(tuán)。大家有沒(méi)有信心?
畫一畫,觀察與思考:
1.畫△ABC邊AC上的中線BE,取邊AB上的中點(diǎn)D,連結(jié)DE,線段DE是中線嗎?
2.嘗試定義
以上線段DE叫做△ABC的中位線,請(qǐng)同學(xué)們嘗試定義什么叫做三角形的中位線?并比較三角形的中位線和中線的區(qū)別。
三角形的中位線:連結(jié)三角形兩邊中點(diǎn)的線段。問(wèn)題:(1)三角形有幾條中位線?
(2)三角形的中位線與中線有什么區(qū)別? 啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形的中線只有一個(gè)端點(diǎn)是邊的中點(diǎn),另一個(gè)端點(diǎn)是三角形的一個(gè)頂點(diǎn)。
3.實(shí)踐與猜想
度量DE和BC的長(zhǎng)度。猜想:DE和BC的關(guān)系 通過(guò)實(shí)踐體會(huì)和感知出:DE∥BC,DE= BC。問(wèn)題:你憑什么猜出:DE∥BC?(看出來(lái)的)
二、自主探究:
1.你能猜出三角形的中位線與第三邊有怎樣的關(guān)系嗎?試證明你的猜想引導(dǎo)學(xué)生寫出已知、求證。
(已知:△ABC中,D、E分別是AB、AC的中點(diǎn)。求證:DE∥BC;DE= BC)
啟發(fā)1:證明直線平行的方法有那些?
啟發(fā)學(xué)生聯(lián)想由角的相等或互補(bǔ)得出平行、由平行四邊形得出平行等。
啟發(fā)2:證明線段倍分的方法有那些?(截長(zhǎng)補(bǔ)短)學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書證明過(guò)程。強(qiáng)調(diào)還有其他證法。
證明:延長(zhǎng)中位線DE到F,使EF=DE,連結(jié)CF。易證△ADE≌△CFE(或證四邊形ADCF為平行四邊)得AD∥ FC,又∵AD=DB,∴DB∥FC,∴四邊形DBCF是平行四邊形,DF∥BC。∵DE= DF,∴DE ∥ BC
2.啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表述: 中位線平行于第三邊且等于第三邊的一半。
【點(diǎn)評(píng)】上述教學(xué)過(guò)程通過(guò)學(xué)生親自動(dòng)手畫、量,猜想發(fā)現(xiàn)了三角形中位線定理,教師引導(dǎo),啟發(fā)學(xué)生思維,討論找到了證明中位線定理的方法。并由學(xué)生自己完成了證明過(guò)程,充
分發(fā)揮了學(xué)生主動(dòng)學(xué)習(xí),合作學(xué)習(xí)和探究性學(xué)習(xí)的功能,培養(yǎng)了學(xué)生發(fā)現(xiàn)問(wèn)題、探究問(wèn)題的能力,以及用數(shù)學(xué)語(yǔ)言表述數(shù)學(xué)問(wèn)題的能力等良好的數(shù)學(xué)品質(zhì)。
三、合作交流: 2.做一做
求證:順次連結(jié)任意四邊形中點(diǎn)所得的四邊形是平行四邊形。
已知:在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
你能證明它是平行四邊形嗎?當(dāng)學(xué)生不會(huì)添輔助線時(shí),教師再作啟發(fā),這么多的中點(diǎn)我們會(huì)想到什么呢?四邊形的問(wèn)題又可以轉(zhuǎn)化成什么圖形的問(wèn)題呢?使學(xué)生能夠連結(jié)對(duì)角線。
學(xué)生議論后口述證明,教師板書證題過(guò)程(估計(jì)學(xué)生可能添兩條對(duì)角線或一條對(duì)角線來(lái)證明)。
證明:連結(jié)BD。
∵E、F分別為AB、DA的中點(diǎn),∴EF∥BD同理 GH∥BD
∴EF∥GH∴四邊形EFGH是平行四邊形。變式:順次連結(jié)上題中,所得到的四邊形EFGH四邊的中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去,所得到的四邊形依次是什么特殊四邊形,請(qǐng)?zhí)羁?,由此得到的結(jié)論是。
要求學(xué)生動(dòng)手畫圖,猜想結(jié)論,再在小組內(nèi)相互討論、交流。
【點(diǎn)評(píng)】通過(guò)例2變式題的形容討論不僅培養(yǎng)了學(xué)生應(yīng)用數(shù)學(xué)知識(shí),解決數(shù)學(xué)問(wèn)題的能力,而且還培養(yǎng)了學(xué)生的歸納推理,猜測(cè)論證能力,(循環(huán)重復(fù)上述四種特殊四邊形),親身體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性、創(chuàng)造性和趣味性。
四、鞏固拓展: 1.練一練:
已知三角形三邊長(zhǎng)分別為6,8,10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?由本題的圖形你能否聯(lián)想到一般性的結(jié)論?(如果△ABC的三邊的長(zhǎng)分別為a、b、c,那么△DGE的周長(zhǎng)是多少?)
已知:△ABC中,D、F是AB邊的三等分點(diǎn),E、G是AC邊的三等分點(diǎn),是否能夠求證出:DE∥BC,且DE=1/3BC
【點(diǎn)評(píng)】該問(wèn)題的設(shè)置具有一定的挑戰(zhàn)性,有助于學(xué)生利用已有知識(shí)經(jīng)驗(yàn)指導(dǎo)解決新問(wèn)題。對(duì)發(fā)展學(xué)生的想象能力,推理猜測(cè)能力有所脾益。
五、檢測(cè)小結(jié) 1.基礎(chǔ)知識(shí):⑴三角線的中位線、以及它與三角形中線的區(qū)別;⑵三角線中位線的性質(zhì)及其應(yīng)用;
2.基本技能:
證明 “中點(diǎn)四邊形”的輔助線的方法,連結(jié)對(duì)角線。
六、作業(yè)布置: P93習(xí)題2,3; 試一試1(學(xué)有余力的同學(xué)課后思考)教師反思:
該節(jié)課的學(xué)習(xí),貫徹了“數(shù)學(xué)課程標(biāo)準(zhǔn)”中的思想。對(duì)學(xué)生要掌握的知識(shí)與技能,學(xué)習(xí)思考、解決問(wèn)題,情感與態(tài)度四大目標(biāo)有較好的體現(xiàn),有一定的推廣意義。
第四篇:三角形中位線反思
《三角形中位線》教學(xué)反思
李紅梅
課改下新課標(biāo)的實(shí)施,不但要求每個(gè)教師在課堂教學(xué)設(shè)計(jì)上、對(duì)學(xué)生評(píng)價(jià)問(wèn)題上、學(xué)生學(xué)習(xí)方式上等方方面面都要有一個(gè)全新的認(rèn)識(shí)和改變。更是要求教與學(xué)后教師與教師之間、教師與學(xué)生之間有所溝通、有所總結(jié)、有所思進(jìn)。就這些方面下面就是我對(duì)“三角形中位線”的課后反思。
在《三角形中位線》的教學(xué)中,在《三角形中位線》的教學(xué)中,新課程在教材上緊緊圍繞著三個(gè)目標(biāo)設(shè)計(jì)的。這節(jié)課的教學(xué)目標(biāo)有以下三點(diǎn):1.經(jīng)歷概念的發(fā)生過(guò)程,提高分析能力,理解三角形的中位線概念,知道三角形的中線和中位線的區(qū)別。2.經(jīng)歷三角形中位線性質(zhì)的探索過(guò)程,進(jìn)一步提高和發(fā)展邏輯思維能力和推理論證的表達(dá)能力;體會(huì)轉(zhuǎn)化的思想方法,進(jìn)一步感受圖形的運(yùn)動(dòng)對(duì)構(gòu)造圖形的作用。3.掌握三角形中位線的性質(zhì)定理,能運(yùn)用三角形中位線定理進(jìn)行計(jì)算和論證,解決簡(jiǎn)單的現(xiàn)實(shí)生活的問(wèn)題,增強(qiáng)應(yīng)用能力和創(chuàng)新意識(shí)。本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)有以下兩點(diǎn):
1、本節(jié)教學(xué)的重點(diǎn)是三角形的中位線定理。
2、三角形的中位線定理的證明、運(yùn)用有較高的難度,是本節(jié)教學(xué)的難點(diǎn)。
在課堂導(dǎo)入中,我以創(chuàng)設(shè)問(wèn)題情景的形式,激起學(xué)生探索的欲望,激發(fā)學(xué)習(xí)的興趣。問(wèn)題是:探索如何測(cè)量一個(gè)池塘的邊上AB兩點(diǎn)之間的寬度?辦法是只要在池塘外取一點(diǎn)C,取 CA的中點(diǎn)D,在取CB的中點(diǎn)E,此時(shí)只需求的DE的長(zhǎng)度,就可知AB的長(zhǎng)度,這是為什么呢?此時(shí)教材體現(xiàn)的是人人是在學(xué)習(xí)有用的數(shù)學(xué)。對(duì)于導(dǎo)入中設(shè)計(jì)的這個(gè)問(wèn)題,班級(jí)里即使是基礎(chǔ)非常差的學(xué)生也被吸引到思考的隊(duì)伍中。引入恰到好處,體現(xiàn)了數(shù)學(xué)的實(shí)用性,數(shù)學(xué)來(lái)源于生活,同時(shí)充分激發(fā)了學(xué)生的學(xué)習(xí)興趣。
帶著強(qiáng)烈的學(xué)習(xí)動(dòng)機(jī),學(xué)生們進(jìn)行合作學(xué)習(xí),內(nèi)容如下:剪一刀,將一張三角形紙片剪成一張三角形和一張?zhí)菪渭埰?,?)如果要求剪得的兩張紙片能拼成平行四邊形,剪痕的位置有什么要求?(2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形作怎樣的圖形變換?這樣安排的目的一是能出現(xiàn)三角形中位線,引出本節(jié)學(xué)習(xí)的課題;二是為證明三角形中位線的定理埋下伏筆,也是有助于用運(yùn)動(dòng)的思想來(lái)思考數(shù)學(xué)問(wèn)題。此時(shí)教學(xué)體現(xiàn)的是人人都能獲得必需的數(shù)學(xué)。探究新知識(shí)時(shí),采用猜想—驗(yàn)證—?dú)w納—應(yīng)用的教學(xué)步驟,使學(xué)生的思維一直處于興奮狀態(tài)。特別在討論后的交流這個(gè)環(huán)節(jié)中,讓學(xué)生發(fā)揮自己的主觀能動(dòng)性。三角形的中位線的性質(zhì)定理的簡(jiǎn)單應(yīng)用,學(xué)生們也都能掌握,這個(gè)定理在實(shí)際生活中的應(yīng)用事非常廣泛的,這一安排體現(xiàn)了標(biāo)準(zhǔn)中的一、二。但是三角形中位線的證明并不是很多學(xué)生能想到的,教師的分析不管如何精彩,輔助線的添法不管如何巧妙,學(xué)生能否在證明中提高能力,這是個(gè)長(zhǎng)久的過(guò)程,所以此時(shí)教學(xué)體現(xiàn)的是不同的人在數(shù)學(xué)上有不同的發(fā)展。
鞏固新知時(shí)的練習(xí)設(shè)計(jì),對(duì)不斷變化的圖形的中點(diǎn)四邊形進(jìn)行探索,能使學(xué)生從中總結(jié)方法,發(fā)現(xiàn)規(guī)律,提高能力。
不足之處:
課前應(yīng)讓學(xué)生做好預(yù)習(xí),以便課堂上有更多的時(shí)間獨(dú)立思考定理的其他證法,在開(kāi)課的時(shí)候介紹中位線的時(shí)候,老師的速度偏慢,而且沒(méi)有讓學(xué)生對(duì)于性質(zhì)的證明給予具體的操作。
課件的練習(xí)題有幾個(gè)沒(méi)有把答案打到上面,學(xué)生沒(méi)有看到。
課后對(duì)所得、所失、不足,只有常思才能不斷更新自我,才能使新課標(biāo)的要求不只是一句空話。我相信教學(xué)反思應(yīng)該讓每個(gè)人都能從中學(xué)到一些有益的東西。
第五篇:三角形中位線論文
三角形中位線的前因后果
三角形的中位線平行于第三邊,并且等于第三邊的一半。已知:如圖
(一),△ABC中,M,N分別是AB,AC兩邊中點(diǎn)。求證:MN平行于BC且等于BC/2.A
圖二
MN
CB 圖一 圖三
BMANCCNAMADNBMAMBNCB圖四
C前因:1.,當(dāng)點(diǎn)A運(yùn)動(dòng)到線段BC上(如圖
(二)),其他條件不變時(shí),易證:MN=BC/2.2.當(dāng)點(diǎn)A運(yùn)動(dòng)到線段BC的延長(zhǎng)線上或反向延長(zhǎng)線上(如圖
(三)),其他條件不變時(shí),易證:MN=BC/2.后果:梯形的中位線平行于兩底,并且等于兩底和的一半。
已知:如圖
(四),梯形ABCD中,M為AB的中點(diǎn),N為CD的中點(diǎn),連接MN,DFA求證:MN平行兩底且等于兩底和的一半。
DA
MFN MN
BECCB圖五
圖六
1.如圖
(五)當(dāng)△ABC的邊AB固定,邊AC平移到DE處,從而得到梯形ABED,AC的中點(diǎn)N平移到DE的中點(diǎn)F點(diǎn)處,所以線段MF就是梯形ABED的中位線,因?yàn)镸N∥BC,NF∥BC,這樣,M、N、F三點(diǎn)共線,即梯形ABED的中位線MF∥BC∥AD,∵AD=DF=CE
∴MFMN+NF=BC/2+(AD+CE)/2=(BC+CE)/2+AD/2=(BE+AD)/2 這樣就證明了梯形中位線定理.2.△ABC可以看成梯形ABCD的兩個(gè)端點(diǎn)D與A重合的特殊情形,那么,如圖(五),當(dāng)點(diǎn)D從A點(diǎn)出發(fā),沿與BC平行的射線AF運(yùn)動(dòng)時(shí),得到梯形ABCD,此時(shí)線段MN就是梯形ABCD的中位線,∵∴
2.MADDANMNBC圖七
B圖八
C想的“做”數(shù)學(xué)的環(huán)境,可以讓學(xué)生從“聽(tīng)”數(shù)學(xué)轉(zhuǎn)變到“做”數(shù)學(xué),以研究者的方式,參與包括發(fā)現(xiàn)、探索在內(nèi)的獲得知識(shí)的全過(guò)程,是一個(gè)開(kāi)展“數(shù)學(xué)實(shí)驗(yàn)”的好“實(shí)驗(yàn)室”。
一、用《幾何畫板》,讓學(xué)生體驗(yàn)數(shù)學(xué)家的感受
提起數(shù)學(xué)實(shí)驗(yàn),人們都會(huì)本能地想到物理實(shí)驗(yàn)、化學(xué)實(shí)驗(yàn)和生物實(shí)驗(yàn)。在日常教學(xué)過(guò)程中,為了讓學(xué)生獲得知識(shí),物理、化學(xué)、生物都需要做實(shí)驗(yàn),而在數(shù)學(xué)教學(xué)中,卻幾乎沒(méi)有實(shí)驗(yàn)。很多數(shù)學(xué)學(xué)習(xí)困難的學(xué)生認(rèn)為數(shù)學(xué)枯燥乏味,就是因?yàn)閿?shù)學(xué)太抽象,不象理化那樣經(jīng)常做實(shí)驗(yàn),看得見(jiàn)。于是,只有數(shù)學(xué)家是在“做”數(shù)學(xué),而學(xué)生卻在被動(dòng)地“聽(tīng)”數(shù)學(xué)。他們聽(tīng)來(lái)的多半是缺少發(fā)現(xiàn)過(guò)程的結(jié)論,而且缺乏他們自己對(duì)所講內(nèi)容的“操作”。這就大大脫離了學(xué)生自己的經(jīng)驗(yàn)體系,致使學(xué)生不能很好的獲取知識(shí)?!稁缀螖?shù)學(xué)教師要利用計(jì)算機(jī)進(jìn)行輔助教學(xué) ,離不開(kāi)作圖 ,特別是在幾何教學(xué)中。過(guò)去本人使用《WORD97》深感在作圖時(shí)有諸多不便。如果將《幾何畫板》與《WORD97》結(jié)合使用 ,既能充分利用《WORD97》在數(shù)學(xué)符號(hào)輸入、數(shù)學(xué)公式編輯和文字排版上的強(qiáng)大功能 ,又能發(fā)揮《幾何畫板》在制作幾何圖形時(shí)簡(jiǎn)單、美觀、準(zhǔn)確、快捷的優(yōu)勢(shì)。同時(shí)《幾何畫板》在教學(xué)中不僅是優(yōu)秀的演示工具 ,而且是學(xué)生在學(xué)習(xí)中有力的探索工具。筆者曾成功地將《幾何畫板》應(yīng)用于《三角形中位線》一課的教學(xué)中(該課參加全國(guó)第二屆初中青年數(shù)學(xué)教師優(yōu)秀課評(píng)比獲一等獎(jiǎng))。下面就以該課為例談?wù)劸唧w應(yīng)用時(shí)的幾點(diǎn)體會(huì)。1 變被動(dòng)接受為主動(dòng)探索建構(gòu)主義理論[1 ] 認(rèn)為 :知識(shí)不是被動(dòng)接受的 ,而是由認(rèn)知主體建構(gòu)的。數(shù)學(xué)學(xué)習(xí)是學(xué)生在已有數(shù)學(xué)認(rèn)知結(jié)構(gòu)的基礎(chǔ)上的建構(gòu)活動(dòng) ,而不是對(duì)數(shù)學(xué)知識(shí)的直接翻版。這就要求我們?cè)诮虒W(xué)中 ,不能只重結(jié)果而偏廢過(guò)程 ,讓學(xué)生被動(dòng)地把結(jié)論機(jī)械地識(shí)記下來(lái) ,這樣獲取的是死知識(shí)。應(yīng)遵循讓學(xué)生觀察理解 ,探索研究 ,發(fā)現(xiàn)問(wèn)題的規(guī)律 ,給學(xué)生一個(gè)建構(gòu)的過(guò)程 ,一個(gè)思維活動(dòng)的學(xué)生參與包括發(fā)現(xiàn)、隨著素質(zhì)教育的全面推進(jìn),用數(shù)學(xué)開(kāi)放題培創(chuàng)新意識(shí)和能力,已經(jīng)成了教改的熱點(diǎn).特別是培養(yǎng)學(xué)生能用運(yùn)觀點(diǎn)去分析問(wèn)題、解決問(wèn)題,也是中考命題的熱點(diǎn).需要教師深入挖掘教材的隱含內(nèi)容 ,設(shè)計(jì)巧妙的問(wèn)題情境 ,激
發(fā)學(xué)生主空間 ,讓養(yǎng)學(xué)生的動(dòng)、變化的近年來(lái),我區(qū)大力推行主動(dòng)參與教學(xué)模式。初探這一模式,很多教師頗感困難。例如,在畫板》被譽(yù)為“21世界的動(dòng)態(tài)幾何”,它就提供了一個(gè)十分理講授三角形中位線的性質(zhì)一節(jié)課時(shí),傳統(tǒng)的教學(xué)方法是把“三角形的中位線平行于第三邊并且等于第三邊的一半”這一性質(zhì)告訴學(xué)生,然后再加以證明。有了《幾何畫板》,可以通過(guò)《幾何畫板》畫一個(gè)△ABC,并畫出它的一條中位線DE,度量三角形各邊的長(zhǎng)度及DE的長(zhǎng)度,顯示它們大小的數(shù)值就展現(xiàn)在屏幕上(如圖)。教師設(shè)計(jì)以下問(wèn)題,讓學(xué)生自己探索、實(shí)驗(yàn)。請(qǐng)你拖動(dòng)三角形的任意一個(gè)頂點(diǎn),通過(guò)觀察回答下列問(wèn)題:(1)
中位線DE與三角形各邊有什么樣的位置關(guān)系?(2)
中位線DE與三角形各邊的長(zhǎng)度有什么相等關(guān)系?(3)
猜想三角形的中位線有什么性質(zhì)?請(qǐng)你用一句話來(lái)概括。(4)
你能證明這一猜想嗎?
動(dòng)探究問(wèn)題的熱情 ,培養(yǎng)學(xué)生的探究能力和強(qiáng)化生物學(xué)思維能力 ,在良好的師生互動(dòng)交流中 ,點(diǎn)化引玉 ,引導(dǎo)學(xué)生突破知識(shí)難點(diǎn)。
隨著學(xué)生拖動(dòng)三角形的任意一個(gè)頂點(diǎn),中位線的位置在屏幕上動(dòng)態(tài)地改變著,并且顯示三角形的三條邊和中位線的長(zhǎng)度的數(shù)據(jù)也在屏幕上跟著改變。這個(gè)演示過(guò)程充分體現(xiàn)了三角形的任意性,并引導(dǎo)學(xué)生關(guān)注變化過(guò)程中的不變關(guān)系、不變量。學(xué)生經(jīng)過(guò)自己的實(shí)際操作,從動(dòng)態(tài)中去觀察、探索、歸納出三角形的中位線的性質(zhì)。對(duì)自己的任何發(fā)現(xiàn),都可以得到及時(shí)地驗(yàn)證。這時(shí)教師的角色不再是學(xué)生的保姆,學(xué)生不再是盛受知識(shí)的容器,也不再是目睹教師口干舌燥的“觀眾”,而是積極參與探索的“主角”,經(jīng)過(guò)自己親身的實(shí)踐活動(dòng),感受、理解知識(shí)產(chǎn)生和發(fā)展的過(guò)程,形成自己的經(jīng)驗(yàn),發(fā)揮了學(xué)生的能動(dòng)性和創(chuàng)造能力,達(dá)到讓學(xué)生“做”數(shù)學(xué)的目的。三角形中位線的幾種變化
動(dòng)點(diǎn)問(wèn)題是最近幾年中考數(shù)學(xué)的熱點(diǎn)題型,這類試題信息量大,對(duì)同學(xué)們獲取和處理信息的能力要求較高,解題時(shí)需要用運(yùn)動(dòng)和變化的眼光去觀察和探究問(wèn)題,挖掘運(yùn)動(dòng)和變化的全過(guò)程,這就要求同學(xué)們具有扎實(shí)的基礎(chǔ)知識(shí)、較強(qiáng)的閱讀理解能力及數(shù)學(xué)的建模能力,動(dòng)點(diǎn)問(wèn)題是近年來(lái)中考中的一個(gè)熱點(diǎn)題型,也是教學(xué)中的一個(gè)難點(diǎn),這類題綜合性強(qiáng)、開(kāi)放度高,要求學(xué)生能從“運(yùn)動(dòng)、變化”的角度去思考問(wèn)題.解答這類題目除了要牢固掌握相關(guān)的數(shù)學(xué)知識(shí)外,還要綜合運(yùn)用數(shù)形結(jié)合、分類討論、方程、函數(shù)、轉(zhuǎn)化等數(shù)學(xué)思想方法去探索解題的思路;它考查面廣,涉及的知識(shí)點(diǎn)眾多,留給學(xué)生很大的思維空間和思維量,需要我們?cè)谶\(yùn)動(dòng)中分析,在變化中求解.本文以2011年全國(guó)各地的中考動(dòng)點(diǎn)類問(wèn)題為例進(jìn)行分析,以供參考.正近幾年,動(dòng)點(diǎn)問(wèn)題成為中考的必考內(nèi)容,這類問(wèn)題無(wú)論對(duì)學(xué)生的知識(shí)基礎(chǔ)水平,還是對(duì)學(xué)生的思維能力、解題能力都是極大的考驗(yàn).如何有效的解決動(dòng)點(diǎn)問(wèn)題是數(shù)學(xué)教學(xué)中值得探索的問(wèn)題.構(gòu)造思想方法是初中數(shù)學(xué)極為重要的數(shù)學(xué)思想,更是一種體現(xiàn)創(chuàng)新思維的思想方法.點(diǎn)動(dòng)、線動(dòng)、形動(dòng)構(gòu)成的問(wèn)題稱之為動(dòng)態(tài)幾何問(wèn)題.它主要以幾何圖形為載體,運(yùn)動(dòng)變化為主線,集多個(gè)知識(shí)點(diǎn)為一體,集多種解題思想于一題.這類題綜合性強(qiáng),能力要求高,它能全面的考查學(xué)生的實(shí)踐操作能力,空間想象能力以及分析問(wèn)題和解決問(wèn)題的能力.其中以靈活多變而著稱的雙動(dòng)點(diǎn)問(wèn)題更成為今年中考試題的熱點(diǎn),現(xiàn)采擷幾例加以分類淺析,逆定理一:在三角形內(nèi),與三角形的兩邊相交,平行且等于三角形第三邊一半的線段是三角形的中位線。
如圖DE//BC,DE=BC/2,則D是AB的中點(diǎn),E是AC的中點(diǎn)。
逆定理二:在三角形內(nèi),經(jīng)過(guò)三角形一邊的中點(diǎn),且與另一邊平行的線段,是三角形的中位線。
如圖D是AB的中點(diǎn),DE//BC,則E是AC的中點(diǎn),DE=BC/
2二、合作交流
ADMNBC
操作:1.剪一個(gè)三角形,記為ΔABC
2.分別取AB、AC的中點(diǎn)D、E,并連接DE 3.沿DE將ΔABC剪成兩部分,并將ΔADE繞點(diǎn)E旋轉(zhuǎn)180°得四邊形DBCF ADADBECBECF
思考:四邊形DBCF是什么特殊的四邊形
1.三角形中位線的概念
想一想:三角形的中線與三角形的中位線的區(qū)別,并畫圖說(shuō)明
三角形中線是一條連接 與 的線段 ⑴ 順次連接任意四邊形四邊中點(diǎn)所得的四邊形是 ⑵ 順次連接矩形的四邊中點(diǎn)所得的四邊形是 ⑶ 順次連接菱形的四邊中點(diǎn)所得的四邊形是
⑷ 順次連接對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是 ⑸ 順次連接對(duì)角線垂直的四邊形四邊中點(diǎn)所得的四邊形是 ⑹ 順次連接對(duì)角線相等且垂直的四邊形四邊中點(diǎn)所得的四邊形是
四、反饋練習(xí)
1.ΔABC中,AB=6㎝,AC=8㎝,BC=10㎝,D﹑E﹑F分別是AB、AC、BC的中點(diǎn)
則ΔDEF的周長(zhǎng)是____,面積是____。
2.ΔABC中,DE是中位線,AF是中線,則DE與AF的關(guān)系是____ 3.若順次連接四邊形四邊中點(diǎn)所得的四邊形是菱形,則原四邊形()
(A)一定是矩形(B)一定是菱形(C)對(duì)角線一定互相垂直(D)對(duì)角線一定相等
4.如圖,A、B兩地被建筑物阻隔,為測(cè)量A、B兩地 的距離,在地面上選一點(diǎn)C,連接CA、CB,分別 取CA、CB的中點(diǎn)D、E.(1)若DE的長(zhǎng)度為36米,求A、B兩地之間的距離; A
D(2)如果D、E兩點(diǎn)之間還有阻隔,你有什么方法解 E F
B
G
C 怎樣將一張?zhí)菪斡布埰舫蓛刹糠?,使分成的兩部分能拼成一個(gè)三角形? 操作:
(1)剪一個(gè)梯形,記為梯形ABCD;(2)分別取AB、CD的中點(diǎn)M、N,連接MN;(3)沿AN將梯形剪成兩部分,并將△ADN繞點(diǎn)N按順180°到△ECN的位置,得△ABE,如右圖。
討論:在上圖中,MN與BE有怎樣的位置關(guān)系和數(shù)量關(guān)
二、合作交流
1.梯形中位線定義:
2.現(xiàn)在我們來(lái)研究梯形中位線有什么性質(zhì).時(shí)針?lè)较蛐D(zhuǎn)
系?為什么? 如右圖所示:MN是梯形 ABCD的中位線,引導(dǎo)學(xué)生回答下列問(wèn)題:
MN與梯形的兩底邊AD、BC有怎樣的位置關(guān)系和數(shù)量關(guān)系?為什么?
①一個(gè)梯形的上底長(zhǎng)4 cm,下底長(zhǎng)6 cm,則其中位線長(zhǎng)為 ; ②一個(gè)梯形的上底長(zhǎng)10 cm,中位線長(zhǎng)16 cm,則其下底長(zhǎng)為 ; ③已知梯形的中位線長(zhǎng)為6 cm,高為8 cm,則該梯形的面積為_(kāi)_______ ; ④已知等腰梯形的周長(zhǎng)為80 cm,中位線與腰長(zhǎng)相等,則它的中位線長(zhǎng).例2:已知:如圖在梯形ABCD中,AD∥BC,AB=AD+BC,P為CD的中點(diǎn),求證:AP⊥BP
四、拓展練習(xí)
1.已知,在梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,且AC =12,BD=9,則此梯形的中位線長(zhǎng)是 ?(A.10 B.
C.
D.12 2.已知,等腰梯形ABCD中,兩條對(duì)角線AC、BD互相垂直,中位線EF長(zhǎng)為8cm,求它的高CH.D C O E A H B)